Seguir
Christian Reimers
Christian Reimers
Dirección de correo verificada de bgc-jena.mpg.de
Título
Citado por
Citado por
Año
Deep learning–an opportunity and a challenge for geo-and astrophysics
C Reimers, C Requena-Mesa
Knowledge discovery in big data from astronomy and earth observation, 251-265, 2020
162020
Determining the Relevance of Features for Deep Neural Networks
C Reimers, J Runge, J Denzler
Proceedings of the European Conference on Computer Vision (ECCV) 1, 2020
112020
Conditional adversarial debiasing: Towards learning unbiased classifiers from biased data
C Reimers, P Bodesheim, J Runge, J Denzler
Pattern Recognition: 43rd DAGM German Conference, DAGM GCPR 2021, Bonn …, 2022
6*2022
Conditional dependence tests reveal the usage of ABCD rule features and bias variables in automatic skin lesion classification
C Reimers, N Penzel, P Bodesheim, J Runge, J Denzler
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
62021
Spatio‐temporal Autoencoders in Weather and Climate Research
XA Tibau, C Reimers, C Requena‐Mesa, J Runge
Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote …, 2021
32021
Using causal inference to globally understand black box predictors beyond saliency maps
C Reimers, J Runge, J Denzler
Proceedings of the 9th International Workshop on Climate Informatics: CI …, 2019
32019
SupernoVAE: VAE based Kernel-PCA for analysis of spatio-temporal earth data
XA Tibau, C Requena-Mesa, C Reimers, J Denzler, V Eyring, ...
Proceedinfs of the 8th international workshop on climate informatics: CI …, 2018
32018
A spatiotemporal stochastic climate model for benchmarking causal discovery methods for teleconnections
XA Tibau, C Reimers, A Gerhardus, J Denzler, V Eyring, J Runge
Environmental Data Science 1, e12, 2022
12022
Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning
RR ElGhawi, B Kraft, C Reimers, M Reichstein, M Körner, P Gentine, ...
Environmental Research Letters 18 (3), 034039, 2023
2023
Investigating Neural Network Training on a Feature Level Using Conditional Independence
N Penzel, C Reimers, P Bodesheim, J Denzler
Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022 …, 2023
2023
Investigating the Consistency of Uncertainty Sampling in Deep Active Learning
N Penzel, C Reimers, CA Brust, J Denzler
Pattern Recognition: 43rd DAGM German Conference, DAGM GCPR 2021, Bonn …, 2022
2022
Spatiotemporal model for benchmarking causal discovery algorithms
XA Tibau, C Reimers, V Eyring, J Denzler, M Reichstein, J Runge
EGU General Assembly Conference Abstracts, 9604, 2020
2020
Toy models to analyze emergent constraint approaches.
XA Tibau, C Reimers, V Eyring, J Denzler, M Reichstein, J Runge
Geophysical Research Abstracts 21, 2019
2019
SupernoVAE: Using deep learning to find spatio-temporal dynamics in Earth system data
XA Tibau, C Requena-Mesa, C Reimers, J Denzler, V Eyring, ...
AGU Fall Meeting 2018, 2018
2018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–14