Jinyuan Chang (常晋源)
Título
Citado por
Citado por
Año
Marginal empirical likelihood and sure independence feature screening
J Chang, CY Tang, Y Wu
The Annals of Statistics 41 (4), 2123-2148, 2013
672013
High dimensional generalized empirical likelihood for moment restrictions with dependent data
J Chang, SX Chen, X Chen
Journal of Econometrics 185 (1), 283-304, 2015
362015
On the approximate maximum likelihood estimation for diffusion processes
J Chang, SX Chen
The Annals of Statistics 39 (6), 2820-2851, 2011
352011
High dimensional stochastic regression with latent factors, endogeneity and nonlinearity
J Chang, B Guo, Q Yao
Journal of Econometrics 189 (2), 297-312, 2015
332015
Principal component analysis for second-order stationary vector time series
J Chang, B Guo, Q Yao
The Annals of Statistics 46 (5), 2094-2124, 2018
30*2018
Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering
J Chang, W Zhou, WX Zhou, L Wang
Biometrics 73 (1), 31-41, 2017
272017
Testing for high-dimensional white noise using maximum cross-correlations
J Chang, Q Yao, W Zhou
Biometrika 104 (1), 111-127, 2017
262017
Local independence feature screening for nonparametric and semiparametric models by marginal empirical likelihood
J Chang, CY Tang, Y Wu
The Annals of Statistics 44 (2), 515-539, 2016
252016
Double-bootstrap methods that use a single double-bootstrap simulation
J Chang, P Hall
Biometrika 102 (1), 203-214, 2015
242015
Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity
J Chang, C Zheng, WX Zhou, W Zhou
Biometrics 73 (4), 1300-1310, 2017
222017
A new scope of penalized empirical likelihood with high-dimensional estimating equations
J Chang, CY Tang, TT Wu
The Annals of Statistics 46 (6B), 3185-3216, 2018
182018
Confidence regions for entries of a large precision matrix
J Chang, Y Qiu, Q Yao, T Zou
Journal of Econometrics 206 (1), 57-82, 2018
12*2018
Cram\'er-type moderate deviations for Studentized two-sample -statistics with applications
J Chang, QM Shao, WX Zhou
The Annals of Statistics 44 (5), 1931-1956, 2016
102016
基于条件异方差分析的水文时序模型及其应用
王红瑞, 高雄, 常晋源, 左恒
系统工程理论与实践 29 (11), 19-30, 2009
72009
Estimation of subgraph densities in noisy networks
J Chang, ED Kolaczyk, Q Yao
arXiv preprint arXiv:1803.02488, 2018
42018
A frequency domain analysis of the error distribution from noisy high-frequency data
J Chang, A Delaigle, P Hall, CY Tang
Biometrika 105 (2), 353-369, 2018
32018
Discussion of ‘Network cross-validation by edge sampling’
J Chang, ED Kolaczyk, Q Yao
Biometrika 107 (2), 277-280, 2020
22020
Optimal covariance matrix estimation for high-dimensional noise in high-frequency data
J Chang, C Liu, CY Tang
arXiv preprint arXiv:1812.08217, 2018
12018
High-dimensional empirical likelihood inference
J Chang, SX Chen, CY Tang, TT Wu
arXiv preprint arXiv:1805.10742, 2018
1*2018
Peter Hall’s contribution to empirical likelihood
J Chang, J Guo, CY Tang
Statistica Sinica 28 (4), 2375-2387, 2018
12018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20