The Navier–Stokes problem modified by an absorption term SN Antontsev, HB de Oliveira Applicable Analysis 89 (12), 1805-1825, 2010 | 69 | 2010 |
Some results on the p(u)-Laplacian problem M Chipot, HB de Oliveira Mathematische Annalen 375 (1), 283-306, 2019 | 39 | 2019 |
Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem SN Antontsev, JI Díaz, HB De Oliveira Journal of Mathematical Fluid Mechanics 6, 439-461, 2004 | 37 | 2004 |
Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem SN Antontsev, JI Díaz, HB de Oliveira Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche …, 2004 | 36 | 2004 |
Stopping a viscous fluid by a feedback dissipative field: thermal effects without phase changing SN Antontsev, JI Díaz, HB de Oliveira Trends in Partial Differential Equations of Mathematical Physics, 1-14, 2005 | 34 | 2005 |
Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids SN Antontsev, HB de Oliveira, K Khompysh Communications in Mathematical Sciences 17 (7), 1915-1948, 2019 | 29 | 2019 |
Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping SN Antontsev, HB de Oliveira, K Khompysh Journal of Mathematical Analysis and Applications 473 (2), 1122-1154, 2019 | 28 | 2019 |
On the confinement of a viscous fluid by means of a feedback external field SN Antontsev, JI Dıaz, HB De Oliveira Comptes Rendus Mécanique 330 (12), 797-802, 2002 | 26 | 2002 |
The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: Existence, uniqueness and regularity SN Antontsev, HB De Oliveira, K Khompysh Nonlinearity 34 (5), 3083, 2021 | 25 | 2021 |
Existence of weak solutions for the generalized Navier–Stokes equations with damping HB de Oliveira Nonlinear Differential Equations and Applications NoDEA 20 (3), 797-824, 2013 | 24 | 2013 |
Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time (Kyoto Conference on the Navier-Stokes Equations and their … SN Antontsev, HB de Oliveira 数理解析研究所講究録別冊 1, 21-41, 2007 | 18 | 2007 |
Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms J Ferreira, HB de Oliveira Amer Inst Mathematical Sciences-Aims, 2017 | 17 | 2017 |
Finite time localized solutions of fluid problems with anisotropic dissipation S Antontsev, HB de Oliveira Free Boundary Problems: Theory and Applications, 23-32, 2007 | 15 | 2007 |
Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids SN Antontsev, HB De Oliveira, K Khompysh Journal of Physics: Conference Series 1268 (1), 012008, 2019 | 14 | 2019 |
Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior S Antontsev, HB De Oliveira, K Khompysh Asymptotic Analysis 121 (2), 125-157, 2021 | 12 | 2021 |
Mathematical models in dynamics of non-Newtonian fluids and in glaciology SN Antontsev, JI Díaz, HB de Oliveira Proceedings of the CMNE/CILAMCE Congress, 2007 | 11 | 2007 |
On a one-equation turbulent model with feedbacks HB de Oliveira, A Paiva Springer Proceedings in Mathematics & Statistics 164, 51-61, 2016 | 10 | 2016 |
Asymptotic behavior of trembling fluids SN Antontsev, HB De Oliveira Nonlinear Analysis: Real World Applications 19, 54-66, 2014 | 10 | 2014 |
Analysis of the existence for the steady Navier-Stokes equations with anisotropic diffusion SN Antontsev, HB de Oliveira | 9 | 2014 |
The Oberbeck–Boussinesq problem modified by a thermo-absorption term SN Antontsev, HB de Oliveira Journal of Mathematical Analysis and Applications 379 (2), 802-817, 2011 | 9 | 2011 |