Seguir
Stephanie L Hyland
Stephanie L Hyland
Microsoft Research Cambridge
Dirección de correo verificada de microsoft.com - Página principal
Título
Citado por
Citado por
Año
Real-valued (medical) time series generation with recurrent conditional gans
C Esteban, SL Hyland, G Rätsch
arXiv preprint arXiv:1706.02633, 2017
4742017
Identification of active transcriptional regulatory elements from GRO-seq data
CG Danko, SL Hyland, LJ Core, AL Martins, CT Waters, HW Lee, ...
Nature methods 12 (5), 433-438, 2015
1572015
Early prediction of circulatory failure in the intensive care unit using machine learning
SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ...
Nature medicine 26 (3), 364-373, 2020
1252020
A global metagenomic map of urban microbiomes and antimicrobial resistance
D Danko, D Bezdan, EE Afshin, S Ahsanuddin, C Bhattacharya, DJ Butler, ...
Cell 184 (13), 3376-3393. e17, 2021
622021
Neural document embeddings for intensive care patient mortality prediction
P Grnarova, F Schmidt, SL Hyland, C Eickhoff
arXiv preprint arXiv:1612.00467, 2016
552016
Learning Unitary Operators with Help From u (n)
SL Hyland, G Rätsch
AAAI 2017, 2016
372016
Improving clinical predictions through unsupervised time series representation learning
X Lyu, M Hueser, SL Hyland, G Zerveas, G Rätsch
arXiv preprint arXiv:1812.00490, 2018
312018
Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit
E Rocheteau, P Liò, S Hyland
Proceedings of the Conference on Health, Inference, and Learning, 58-68, 2021
122021
Machine learning for health (ML4H) 2020: Advancing healthcare for all
SK Sarkar, S Roy, E Alsentzer, MBA McDermott, F Falck, I Bica, G Adams, ...
Machine Learning for Health, 1-11, 2020
92020
A generative model of words and relationships from multiple sources
SL Hyland, T Karaletsos, G Rätsch
Association for the Advancement of Artificial Intelligence, 2016
92016
Machine learning for early prediction of circulatory failure in the intensive care unit
SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ...
arXiv preprint arXiv:1904.07990, 2019
82019
On the intrinsic privacy of stochastic gradient descent
SL Hyland, S Tople
Preprint at https://arxiv. org/pdf/1912.02919. pdf, 2019
72019
Real-Valued (Medical) Time Series Generation with Recurrent Conditional GANs.” arXiv e-prints
C Esteban, SL Hyland, G Rätsch
arXiv preprint arXiv:1706.02633, 2017
52017
Unsupervised extraction of phenotypes from cancer clinical notes for association studies
SG Stark, SL Hyland, MF Pradier, K Lehmann, A Wicki, FP Cruz, JE Vogt, ...
arXiv preprint arXiv:1904.12973, 2019
32019
Predicting length of stay in the intensive care unit with temporal pointwise convolutional networks
E Rocheteau, P Liò, S Hyland
arXiv preprint arXiv:2006.16109, 2020
22020
An Empirical Study on the Intrinsic Privacy of SGD
SL Hyland, S Tople
arXiv preprint arXiv:1912.02919, 2019
22019
Knowledge transfer with medical language embeddings
SL Hyland, T Karaletsos, G Rätsch
arXiv preprint arXiv:1602.03551, 2016
22016
Largescale sentence clustering from electronic health records for genetic associations in cancer
MF Pradier, S Stark, S Hyland, JE Vogt, G Rätsch
Machine Learning for Computational Biology Workshop in Neural Information …, 2015
22015
Accurate identification of active transcriptional regulatory elements from global run-on and sequencing data
CG Danko, SL Hyland, LJ Core, AL Martins, CT Waters, HW Lee, ...
bioRxiv, 011353, 2014
22014
Predicting circulatory system deterioration in intensive care unit patients
SL Hyland, M Hüser, X Lyu, M Faltys, T Merz, G Rätsch
AIH@ IJCAI, 2018
12018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20