Nanxin Chen
Título
Citado por
Citado por
Año
Espnet: End-to-end speech processing toolkit
S Watanabe, T Hori, S Karita, T Hayashi, J Nishitoba, Y Unno, NEY Soplin, ...
arXiv preprint arXiv:1804.00015, 2018
1402018
Deep feature for text-dependent speaker verification
Y Liu, Y Qian, N Chen, T Fu, Y Zhang, K Yu
Speech Communication 73, 1-13, 2015
1192015
Multi-task learning for text-dependent speaker verification
N Chen, Y Qian, K Yu
Proc. 16th Annual Conference of the International Speech Communication …, 2015
602015
Robust deep feature for spoofing detection—The SJTU system for ASVspoof 2015 challenge
N Chen, Y Qian, H Dinkel, B Chen, K Yu
Sixteenth Annual Conference of the International Speech Communication …, 2015
582015
Overview of BTAS 2016 speaker anti-spoofing competition
P Korshunov, S Marcel, H Muckenhirn, AR Gonçalves, AGS Mello, ...
2016 IEEE 8th international conference on biometrics theory, applications …, 2016
462016
Deep features for automatic spoofing detection
Y Qian, N Chen, K Yu
Speech Communication 85, 43-52, 2016
352016
End-to-end spoofing detection with raw waveform CLDNNS
H Dinkel, N Chen, Y Qian, K Yu
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
322017
A comparative study on transformer vs rnn in speech applications
S Karita, N Chen, T Hayashi, T Hori, H Inaguma, Z Jiang, M Someki, ...
arXiv preprint arXiv:1909.06317, 2019
252019
Age estimation in short speech utterances based on LSTM recurrent neural networks
R Zazo, PS Nidadavolu, N Chen, J Gonzalez-Rodriguez, N Dehak
IEEE Access 6, 22524-22530, 2018
222018
Deep feature engineering for noise robust spoofing detection
Y Qian, N Chen, H Dinkel, Z Wu
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (10 …, 2017
132017
State-of-the-art Speaker Recognition for Telephone and Video Speech: the JHU-MIT Submission for NIST SRE18
J Villalba, N Chen, D Snyder, D Garcia-Romero, A McCree, G Sell, ...
Proc. Interspeech 2019, 1488-1492, 2019
112019
State-of-the-art speaker recognition with neural network embeddings in nist sre18 and speakers in the wild evaluations
J Villalba, N Chen, D Snyder, D Garcia-Romero, A McCree, G Sell, ...
Computer Speech & Language 60, 101026, 2020
102020
The jhu-mit system description for nist sre18
J Villalba, N Chen, D Snyder, D Garcia-Romero, A McCree, G Sell, ...
Johns Hopkins University, Baltimore, MD, Tech. Rep, 2018
82018
End-to-end Deep Neural Network Age Estimation.
P Ghahremani, PS Nidadavolu, N Chen, J Villalba, D Povey, ...
Interspeech, 277-281, 2018
82018
ASSERT: Anti-Spoofing with squeeze-excitation and residual networks
CI Lai, N Chen, J Villalba, N Dehak
arXiv preprint arXiv:1904.01120, 2019
62019
The jhu speaker recognition system for the voices 2019 challenge
D Snyder, J Villalba, N Chen, D Povey, G Sell, N Dehak, S Khudanpur
Proc. Interspeech, 2468-2472, 2019
52019
The MIT Lincoln Laboratory/JHU/EPITA-LSE LRE17 System.
F Richardson, PA Torres-Carrasquillo, J Borgstrom, DE Sturim, Y Gwon, ...
Odyssey, 54-59, 2018
32018
Evaluating VAD for automatic speech recognition
S Tong, N Chen, Y Qian, K Yu
2014 12th International Conference on Signal Processing (ICSP), 2308-2314, 2014
32014
Feature enhancement with deep feature losses for speaker verification
S Kataria, PS Nidadavolu, J Villalba, N Chen, P García, N Dehak
arXiv preprint arXiv:1910.11905, 2019
22019
x-vectors meet emotions: A study on dependencies between emotion and speaker recognition
R Pappagari, T Wang, J Villalba, N Chen, N Dehak
arXiv preprint arXiv:2002.05039, 2020
12020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20