Andrew J.R. Simpson, PhD
Andrew J.R. Simpson, PhD
Research Fellow, CVSSP, University of Surrey
Dirección de correo verificada de surrey.ac.uk
Título
Citado por
Citado por
Año
Deep karaoke: Extracting vocals from musical mixtures using a convolutional deep neural network
AJR Simpson, G Roma, MD Plumbley
International Conference on Latent Variable Analysis and Signal Separation …, 2015
882015
Single-channel audio source separation using deep neural network ensembles
EM Grais, G Roma, AJR Simpson, MD Plumbley
Audio Engineering Society Convention 140, 2016
322016
Two-stage single-channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, MD Plumbley
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (9), 1773 …, 2017
262017
The mathematics of mixing
M Terrell, A Simpson, M Sandler
Journal of the audio engineering society 62 (1/2), 4-13, 2014
262014
Abstract learning via demodulation in a deep neural network
AJR Simpson
arXiv preprint arXiv:1502.04042, 2015
232015
Combining mask estimates for single channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, M Plumbley
Interspeech2016 Proceedings, 2016
212016
Visual objects in the auditory system in sensory substitution: How much information do we need?
DJ Brown, AJR Simpson, MJ Proulx
Multisensory research 27 (5-6), 337-357, 2014
172014
Syncopation and the score
C Song, AJR Simpson, CA Harte, MT Pearce, MB Sandler
PloS one 8 (9), 2013
162013
Discriminative enhancement for single channel audio source separation using deep neural networks
EM Grais, G Roma, AJR Simpson, MD Plumbley
International Conference on Latent Variable Analysis and Signal Separation …, 2017
152017
Selective adaptation to “oddball” sounds by the human auditory system
AJR Simpson, NS Harper, JD Reiss, D McAlpine
Journal of Neuroscience 34 (5), 1963-1969, 2014
152014
Probabilistic binary-mask cocktail-party source separation in a convolutional deep neural network
AJR Simpson
arXiv preprint arXiv:1503.06962, 2015
142015
Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods
AJR Simpson, G Roma, EM Grais, RD Mason, C Hummersone, A Liutkus, ...
2016 24th European Signal Processing Conference (EUSIPCO), 1763-1767, 2016
132016
Dither is better than dropout for regularising deep neural networks
AJR Simpson
arXiv preprint arXiv:1508.04826, 2015
102015
Over-sampling in a deep neural network
AJR Simpson
arXiv preprint arXiv:1502.03648, 2015
102015
Music remixing and upmixing using source separation
G Roma, EM Grais, AJR Simpson, MD Plumbley
Proceedings of the 2nd AES Workshop on Intelligent Music Production, 2016
82016
Deep transform: cocktail party source separation via complex convolution in a deep neural network
AJR Simpson
arXiv preprint arXiv:1504.02945, 2015
72015
The dynamic range paradox: a central auditory model of intensity change detection
AJR Simpson, JD Reiss
PloS one 8 (2), 2013
72013
Sounds not signals: A perceptual audio format
MJ Terrell, AJR Simpson, M Sandler
Audio Engineering Society Convention 132, 2012
72012
Psychophysical evaluation of audio source separation methods
AJR Simpson, G Roma, EM Grais, RD Mason, C Hummersone, ...
International Conference on Latent Variable Analysis and Signal Separation …, 2017
62017
On-the-fly learning in a perpetual learning machine
AJR Simpson
arXiv preprint arXiv:1509.00913, 2015
62015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20