Hande Celikkanat
Título
Citado por
Citado por
Año
Self-Organized Flocking with a Mobile Robot Swarm
AE Turgut, H Celikkanat, F Gokce, E Sahin
International Conference on Autonomous Agents and Multiagent Systems (AAMAS …, 2008
2982008
Steering self-organized robot flocks through externally guided individuals
H Celikkanat, E Şahin
Neural Computing and Applications 19 (6), 849-865, 2010
862010
Kobot: A mobile robot designed specifically for swarm robotics research
AE Turgut, F Gokce, H Celikkanat, L Bayindir, E Sahin
Middle East Technical University, Ankara, Turkey, METU-CENG-TR Tech. Rep 5 …, 2007
362007
Parental scaffolding as a bootstrapping mechanism for learning grasp affordances and imitation skills
E Ugur, Y Nagai, H Celikkanat, E Öztop
ROBOTICA, 2015
282015
A probabilistic concept web on a humanoid robot
H Celikkanat, G Orhan, S Kalkan
IEEE Transactions on Autonomous Mental Development, 2014
262014
Learning context on a humanoid robot using incremental latent dirichlet allocation
H Celikkanat, G Orhan, N Pugeault, F Guerin, E Şahin, S Kalkan
IEEE Transactions on Cognitive and Developmental Systems 8 (1), 42-59, 2015
242015
Modeling phase transition in self-organized mobile robot flocks
AE Turgut, C Huepe, H Çelikkanat, F Gökçe, E Şahin
International Conference on Ant Colony Optimization and Swarm Intelligence …, 2008
192008
Guiding a robot flock via informed robots
H Celikkanat, AE Turgut, E Şahin
Distributed autonomous robotic systems 8, 215-225, 2009
162009
Learning to grasp with parental scaffolding
E Ugur, H Celikkanat, E Şahin, Y Nagai, E Oztop
2011 11th IEEE-RAS International Conference on Humanoid Robots, 480-486, 2011
142011
Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation
H Celikkanat, G Orhan, N Pugeault, F Guerin, E Sahin, S Kalkan
IEEE ICDL-Epirob 2014, 2014
132014
A deep incremental boltzmann machine for modeling context in robots
FI Doğan, H Celikkanat, S Kalkan
2018 IEEE International Conference on Robotics and Automation (ICRA), 2411-2416, 2018
82018
Predicting prosodic prominence from text with pre-trained contextualized word representations
A Talman, A Suni, H Celikkanat, S Kakouros, J Tiedemann, M Vainio
arXiv preprint arXiv:1908.02262, 2019
72019
Integrating spatial concepts into a probabilistic concept web
H Celikkanat, E Şahin, S Kalkan
2015 International Conference on Advanced Robotics (ICAR), 259-264, 2015
52015
Optimization of self-organized flocking of a robot swarm via evolutionary strategies
H Celikkanat
Computer and Information Sciences, 2008. ISCIS'08. 23rd International …, 2008
52008
Are multilingual neural machine translation models better at capturing linguistic features?
D Mareček, H Celikkanat, M Silfverberg, V Ravishankar, J Tiedemann
The Prague Bulletin of Mathematical Linguistics, 2020
32020
Decoding emotional valence from electroencephalographic rhythmic activity
H Celikkanat, H Moriya, T Ogawa, JP Kauppi, M Kawanabe, A Hyvärinen
International Conference of the IEEE Engineering in Medicine and Biology …, 2017
32017
Recurrent Slow Feature Analysis for Developing Object Permanence in Robots
H Celikkanat, E Sahin, S Kalkan
IROS 2013 Workshop on Neuroscience and Robotics, 2013
22013
Kobot: Suru robot çalismalari için tasarlanmis gezgin robot platformu
AE Turgut, F Gokce, H Celikkanat, L Bayindir, E Sahin
Turkiye Otomatik Kontrol Ulusal Toplantisi, 2007
12007
Kobot: Suru robot çalısmaları için tasarlanmıs gezgin robot platformu
AE Turgut, F Gökçe, H Celikkanat, L Bayındır, E Sahin
TOK’07, 259, 0
1
Controlling the Imprint of Passivization and Negation in Contextualized Representations
H Celikkanat, S Virpioja, J Tiedemann, M Apidianaki
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting …, 2020
2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20