Seguir
Deep Ray
Título
Citado por
Citado por
Año
Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
Q Wang, JS Hesthaven, D Ray
Journal of computational physics 384, 289-307, 2019
2842019
Deep learning observables in computational fluid dynamics
KO Lye, S Mishra, D Ray
Journal of Computational Physics 410, 109339, 2020
1822020
An artificial neural network as a troubled-cell indicator
D Ray, JS Hesthaven
Submitted, 2017
1812017
Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity tuned by neural networks
N Discacciati, JS Hesthaven, D Ray
Journal of Computational Physics 409, 109304, 2020
902020
Constraint-aware neural networks for Riemann problems
J Magiera, D Ray, JS Hesthaven, C Rohde
Journal of Computational Physics 409, 109345, 2020
782020
Detecting troubled-cells on two-dimensional unstructured grids using a neural network
D Ray, JS Hesthaven
Journal of Computational Physics 397, 108845, 2019
782019
Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
KO Lye, S Mishra, D Ray, P Chandrashekar
Computer Methods in Applied Mechanics and Engineering 374, 113575, 2021
772021
Entropy stable scheme on two-dimensional unstructured grids for Euler equations
D Ray, P Chandrashekar, US Fjordholm, S Mishra
Communications in Computational Physics 19 (5), 1111-1140, 2016
642016
Solution of physics-based Bayesian inverse problems with deep generative priors
DV Patel, D Ray, AA Oberai
Computer Methods in Applied Mechanics and Engineering 400, 115428, 2022
492022
Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks
L Schwander, D Ray, JS Hesthaven
Journal of Computational Physics 431, 110144, 2021
362021
Variationally mimetic operator networks
D Patel, D Ray, MRA Abdelmalik, TJR Hughes, AA Oberai
Computer Methods in Applied Mechanics and Engineering 419, 116536, 2024
322024
A sign preserving WENO reconstruction method
US Fjordholm, D Ray
Journal of Scientific Computing 68, 42-63, 2016
302016
The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse problems
D Ray, H Ramaswamy, DV Patel, AA Oberai
arXiv preprint arXiv:2202.07773, 2022
242022
An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids
D Ray, P Chandrashekar
Applied Mathematics and Computation 314, 257-286, 2017
202017
Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data
U Koley, D Ray, T Sarkar
SIAM/ASA Journal on Uncertainty Quantification 9 (1), 65-105, 2021
182021
A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows
C Liu, D Ray, C Thiele, L Lin, B Riviere
Journal of Computational Physics 449, 110769, 2022
152022
Entropy stable schemes for compressible Euler equations
D Ray, P Chandrashekar
Int. J. Numer. Anal. Model. Ser. B 4 (4), 335-352, 2013
152013
Solution of physics-based inverse problems using conditional generative adversarial networks with full gradient penalty
D Ray, J Murgoitio-Esandi, A Dasgupta, AA Oberai
Computer Methods in Applied Mechanics and Engineering 417, 116338, 2023
142023
A dimension-reduced variational approach for solving physics-based inverse problems using generative adversarial network priors and normalizing flows
A Dasgupta, DV Patel, D Ray, EA Johnson, AA Oberai
Computer Methods in Applied Mechanics and Engineering 420, 116682, 2024
102024
On the approximation of rough functions with deep neural networks
T De Ryck, S Mishra, D Ray
SeMA Journal 79 (3), 399-440, 2022
102022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20