Dmitriy Drusvyatskiy
Dmitriy Drusvyatskiy
Dirección de correo verificada de - Página principal
Citado por
Citado por
Error bounds, quadratic growth, and linear convergence of proximal methods
D Drusvyatskiy, AS Lewis
Mathematics of Operations Research 43 (3), 919-948, 2018
Stochastic model-based minimization of weakly convex functions
D Davis, D Drusvyatskiy
SIAM Journal on Optimization 29 (1), 207–239, 2018
Efficiency of minimizing compositions of convex functions and smooth maps
D Drusvyatskiy, C Paquette
Mathematical Programming 178 (1), 503-558, 2019
Transversality and alternating projections for nonconvex sets
D Drusvyatskiy, AD Ioffe, AS Lewis
Foundations of Computational Mathematics 15 (6), 1637-1651, 2015
Stochastic subgradient method converges on tame functions
D Davis, D Drusvyatskiy, S Kakade, JD Lee
Foundations of computational mathematics 20 (1), 119-154, 2020
Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential
D Drusvyatskiy, AS Lewis
SIAM Journal on Optimization 23 (1), 256-267, 2013
Catalyst for gradient-based nonconvex optimization
C Paquette, H Lin, D Drusvyatskiy, J Mairal, Z Harchaoui
International Conference on Artificial Intelligence and Statistics, 613-622, 2018
Second-order growth, tilt stability, and metric regularity of the subdifferential
D Drusvyatskiy, BS Mordukhovich, TTA Nghia
arXiv preprint arXiv:1304.7385, 2013
The nonsmooth landscape of phase retrieval
D Davis, D Drusvyatskiy, C Paquette
IMA Journal of Numerical Analysis 40 (4), 2652-2695, 2020
An optimal first order method based on optimal quadratic averaging
D Drusvyatskiy, M Fazel, S Roy
SIAM Journal on Optimization 28 (1), 251-271, 2018
Level-set methods for convex optimization
AY Aravkin, JV Burke, D Drusvyatskiy, MP Friedlander, S Roy
Mathematical Programming 174 (1), 359-390, 2019
The many faces of degeneracy in conic optimization
D Drusvyatskiy, H Wolkowicz
arXiv preprint arXiv:1706.03705, 2017
Orthogonal invariance and identifiability
A Daniilidis, D Drusvyatskiy, AS Lewis
SIAM Journal on Matrix Analysis and Applications 35 (2), 580-598, 2014
Coordinate shadows of semidefinite and Euclidean distance matrices
D Drusvyatskiy, G Pataki, H Wolkowicz
SIAM Journal on Optimization 25 (2), 1160-1178, 2015
The proximal point method revisited
D Drusvyatskiy
arXiv preprint arXiv:1712.06038, 2017
Low-rank matrix recovery with composite optimization: good conditioning and rapid convergence
V Charisopoulos, Y Chen, D Davis, M Díaz, L Ding, D Drusvyatskiy
arXiv preprint arXiv:1904.10020, 2019
Subgradient methods for sharp weakly convex functions
D Davis, D Drusvyatskiy, KJ MacPhee, C Paquette
Journal of Optimization Theory and Applications 179 (3), 962-982, 2018
Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria
D Drusvyatskiy, AD Ioffe, AS Lewis
Mathematical Programming, 1-27, 2019
Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier
D Drusvyatskiy, N Krislock, YL Voronin, H Wolkowicz
SIAM Journal on Optimization 27 (4), 2301-2331, 2017
Quadratic growth and critical point stability of semi-algebraic functions
D Drusvyatskiy, AD Ioffe
Mathematical Programming 153 (2), 635-653, 2015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20