Sanja Fidler
Sanja Fidler
Dirección de correo verificada de cs.toronto.edu - Página principal
Título
Citado por
Citado por
Año
Skip-thought vectors
R Kiros, Y Zhu, RR Salakhutdinov, R Zemel, R Urtasun, A Torralba, ...
Advances in neural information processing systems, 3294-3302, 2015
23632015
Aligning books and movies: Towards story-like visual explanations by watching movies and reading books
Y Zhu, R Kiros, R Zemel, R Salakhutdinov, R Urtasun, A Torralba, S Fidler
Proceedings of the IEEE international conference on computer vision, 19-27, 2015
13352015
Scene parsing through ade20k dataset
B Zhou, H Zhao, X Puig, S Fidler, A Barriuso, A Torralba
Proceedings of the IEEE conference on computer vision and pattern …, 2017
11742017
The role of context for object detection and semantic segmentation in the wild
R Mottaghi, X Chen, X Liu, NG Cho, SW Lee, S Fidler, R Urtasun, A Yuille
Proceedings of the IEEE conference on computer vision and pattern …, 2014
9682014
3d object proposals for accurate object class detection
X Chen, K Kundu, Y Zhu, AG Berneshawi, H Ma, S Fidler, R Urtasun
Advances in Neural Information Processing Systems, 424-432, 2015
6402015
Monocular 3d object detection for autonomous driving
X Chen, K Kundu, Z Zhang, H Ma, S Fidler, R Urtasun
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
6302016
Semantic understanding of scenes through the ade20k dataset
B Zhou, H Zhao, X Puig, T Xiao, S Fidler, A Barriuso, A Torralba
International Journal of Computer Vision 127 (3), 302-321, 2019
5852019
Vse++: Improving visual-semantic embeddings with hard negatives
F Faghri, DJ Fleet, JR Kiros, S Fidler
arXiv preprint arXiv:1707.05612, 2017
5692017
Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
J Yao, S Fidler, R Urtasun
2012 IEEE conference on computer vision and pattern recognition, 702-709, 2012
4832012
Movieqa: Understanding stories in movies through question-answering
M Tapaswi, Y Zhu, R Stiefelhagen, A Torralba, R Urtasun, S Fidler
Proceedings of the IEEE conference on computer vision and pattern …, 2016
4812016
Order-embeddings of images and language
I Vendrov, R Kiros, S Fidler, R Urtasun
arXiv preprint arXiv:1511.06361, 2015
4462015
Detect what you can: Detecting and representing objects using holistic models and body parts
X Chen, R Mottaghi, X Liu, S Fidler, R Urtasun, A Yuille
Proceedings of the IEEE conference on computer vision and pattern …, 2014
4412014
Scaling egocentric vision: The epic-kitchens dataset
D Damen, H Doughty, GM Farinella, S Fidler, A Furnari, E Kazakos, ...
Proceedings of the European Conference on Computer Vision (ECCV), 720-736, 2018
4302018
Towards diverse and natural image descriptions via a conditional gan
B Dai, S Fidler, R Urtasun, D Lin
Proceedings of the IEEE International Conference on Computer Vision, 2970-2979, 2017
3882017
Predicting deep zero-shot convolutional neural networks using textual descriptions
J Lei Ba, K Swersky, S Fidler
Proceedings of the IEEE International Conference on Computer Vision, 4247-4255, 2015
3722015
Holistic scene understanding for 3d object detection with rgbd cameras
D Lin, S Fidler, R Urtasun
Proceedings of the IEEE international conference on computer vision, 1417-1424, 2013
3152013
3d graph neural networks for rgbd semantic segmentation
X Qi, R Liao, J Jia, S Fidler, R Urtasun
Proceedings of the IEEE International Conference on Computer Vision, 5199-5208, 2017
3032017
Towards scalable representations of object categories: Learning a hierarchy of parts
S Fidler, A Leonardis
2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2007
2582007
Gated-scnn: Gated shape cnns for semantic segmentation
T Takikawa, D Acuna, V Jampani, S Fidler
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
2512019
Efficient interactive annotation of segmentation datasets with polygon-rnn++
D Acuna, H Ling, A Kar, S Fidler
Proceedings of the IEEE conference on Computer Vision and Pattern …, 2018
2412018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20