Multi-resolution multi-task Gaussian processes O Hamelijnck, T Damoulas, K Wang, M Girolami Advances in Neural Information Processing Systems 32, 2019 | 51 | 2019 |
Transforming Gaussian processes with normalizing flows J Maroñas, O Hamelijnck, J Knoblauch, T Damoulas International Conference on Artificial Intelligence and Statistics, 1081-1089, 2021 | 41 | 2021 |
Spatio-temporal variational Gaussian processes O Hamelijnck, W Wilkinson, N Loppi, A Solin, T Damoulas Advances in Neural Information Processing Systems 34, 23621-23633, 2021 | 40 | 2021 |
Non-separable Non-stationary random fields K Wang, O Hamelijnck, T Damoulas, M Steel International Conference on Machine Learning, 9887-9897, 2020 | 20 | 2020 |
Nonstationary nonseparable random fields K Wang, O Hamelijnck, T Damoulas, M Steel Proceedings of the 37th International Conference on Machine Learning (ICML), 2020 | 4 | 2020 |
Federated Generalised Variational Inference: A Robust Probabilistic Federated Learning Framework T Mildner, O Hamelijnck, P Giampouras, T Damoulas arXiv preprint arXiv:2502.00846, 2025 | | 2025 |
Physics-Informed Variational State-Space Gaussian Processes O Hamelijnck, A Solin, T Damoulas Advances in Neural Information Processing Systems 37, 98505-98536, 2025 | | 2025 |
Scalable Bayesian inference for spatio-temporal Gaussian processes O Hamelijnck University of Warwick, 2024 | | 2024 |
Supplementary Material for Multi-resolution Multi-task Gaussian Processes O Hamelijnck, T Damoulas, K Wang, MA Girolami | | |