Rueckert Elmar
Rueckert Elmar
Assistant Professor, ROB, Universität zu Lübeck
Verified email at rob.uni-luebeck.de - Homepage
TitleCited byYear
Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems
E Rückert, A d'Avella
Frontiers in computational neuroscience 7, 138, 2013
412013
Learned Graphical Models for Probabilistic Planning Provide a New Class of Movement Primitives
E Rückert, G Neumann, M Toussaint, W Maass
Frontiers in Computational Neuroscience 6 (97), 2012
372012
Learning inverse dynamics models with contacts
R Calandra, S Ivaldi, MP Deisenroth, E Rueckert, J Peters
2015 IEEE International Conference on Robotics and Automation (ICRA), 3186-3191, 2015
362015
Learning soft task priorities for control of redundant robots
V Modugno, G Neumann, E Rueckert, G Oriolo, J Peters, S Ivaldi
2016 IEEE International Conference on Robotics and Automation (ICRA), 221-226, 2016
242016
Recurrent spiking networks solve planning tasks
E Rueckert, D Kappel, D Tanneberg, D Pecevski, J Peters
Scientific reports 6, 21142, 2016
242016
Extracting Low-Dimensional Control Variables for Movement Primitives
E Rueckert, J Mundo, A Paraschos, J Peters, G Neumann
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2015
222015
Simultaneous localisation and mapping for mobile robots with recent sensor technologies
EA Rückert
na, 2009
182009
A low-cost sensor glove with vibrotactile feedback and multiple finger joint and hand motion sensing for human-robot interaction
P Weber, E Rueckert, R Calandra, J Peters, P Beckerle
2016 25th IEEE International Symposium on Robot and Human Interactive …, 2016
132016
Stochastic optimal control methods for investigating the power of morphological computation
EA Rückert, G Neumann
Artificial Life 19 (1), 115-131, 2013
132013
Model-free probabilistic movement primitives for physical interaction
A Paraschos, E Rueckert, J Peters, G Neumann
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015
112015
Learning Inverse Dynamics Models in O (n) time with LSTM networks
E Rueckert, M Nakatenus, S Tosatto, J Peters
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids …, 2017
102017
Robust Policy Updates for Stochastic Optimal Control
E Rueckert, M Mindt, J Peters, G Neumann
Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2014
82014
Vroegmoderne economische ontwikkeling en sociale repercussies in de zuidelijke Nederlanden
W Ryckbosch
tijdschrift voor sociale en economische geschiedenis 7 (3), 26-55, 2010
72010
Low-cost sensor glove with force feedback for learning from demonstrations using probabilistic trajectory representations
E Rueckert, R Lioutikov, R Calandra, M Schmidt, P Beckerle, J Peters
arXiv preprint arXiv:1510.03253, 2015
62015
Probabilistic movement models show that postural control precedes and predicts volitional motor control
E Rueckert, J Čamernik, J Peters, J Babič
Scientific reports 6, 28455, 2016
52016
Model estimation and control of compliant contact normal force
M Azad, V Ortenzi, HC Lin, E Rueckert, M Mistry
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids …, 2016
42016
Intrinsic motivation and mental replay enable efficient online adaptation in stochastic recurrent networks
D Tanneberg, J Peters, E Rueckert
Neural Networks 109, 67-80, 2019
32019
Probabilistic movement primitives under unknown system dynamics
A Paraschos, E Rueckert, J Peters, G Neumann
Advanced Robotics 32 (6), 297-310, 2018
32018
Online learning with stochastic recurrent neural networks using intrinsic motivation signals
D Tanneberg, J Peters, E Rueckert
Conference on Robot Learning, 167-174, 2017
32017
Deep spiking networks for model-based planning in humanoids
D Tanneberg, A Paraschos, J Peters, E Rueckert
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids …, 2016
32016
The system can't perform the operation now. Try again later.
Articles 1–20