Yu Zhang
Yu Zhang
Google
Dirección de correo verificada de csail.mit.edu - Página principal
TítuloCitado porAño
Natural tts synthesis by conditioning wavenet on mel spectrogram predictions
J Shen, R Pang, RJ Weiss, M Schuster, N Jaitly, Z Yang, Z Chen, Y Zhang, ...
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
4082018
An introduction to computational networks and the computational network toolkit
MS Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian ...
Tech. Rep. MSR, Microsoft Research, 2014, http://codebox/cntk, 2014
267*2014
Very deep convolutional networks for end-to-end speech recognition
Y Zhang, W Chan, N Jaitly
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
2592017
Highway long short-term memory rnns for distant speech recognition
Y Zhang, G Chen, D Yu, K Yaco, S Khudanpur, J Glass
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
2072016
Spoken language understanding using long short-term memory neural networks
K Yao, B Peng, Y Zhang, D Yu, G Zweig, Y Shi
IEEE SLT, 2014
1952014
Advances in joint CTC-attention based end-to-end speech recognition with a deep CNN encoder and RNN-LM
T Hori, S Watanabe, Y Zhang, W Chan
arXiv preprint arXiv:1706.02737, 2017
1322017
Specaugment: A simple data augmentation method for automatic speech recognition
DS Park, W Chan, Y Zhang, CC Chiu, B Zoph, ED Cubuk, QV Le
arXiv preprint arXiv:1904.08779, 2019
1242019
Transfer learning from speaker verification to multispeaker text-to-speech synthesis
Y Jia, Y Zhang, R Weiss, Q Wang, J Shen, F Ren, P Nguyen, R Pang, ...
Advances in neural information processing systems, 4480-4490, 2018
1142018
Unsupervised learning of disentangled and interpretable representations from sequential data
WN Hsu, Y Zhang, J Glass
Advances in neural information processing systems, 1878-1889, 2017
1142017
Style tokens: Unsupervised style modeling, control and transfer in end-to-end speech synthesis
Y Wang, D Stanton, Y Zhang, RJ Skerry-Ryan, E Battenberg, J Shor, ...
arXiv preprint arXiv:1803.09017, 2018
1092018
Training rnns as fast as cnns
T Lei, Y Zhang, Y Artzi
1032018
Deep beamforming networks for multi-channel speech recognition
X Xiao, S Watanabe, H Erdogan, L Lu, J Hershey, ML Seltzer, G Chen, ...
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
952016
Learning latent representations for speech generation and transformation
WN Hsu, Y Zhang, J Glass
arXiv preprint arXiv:1704.04222, 2017
642017
Extracting deep neural network bottleneck features using low-rank matrix factorization
Y Zhang, E Chuangsuwanich, J Glass
2014 IEEE international conference on acoustics, speech and signal …, 2014
602014
I-Vector Based Clustering Training Data in Speech Recognition
Q Huo, ZJ Yan, Y Zhang, J Xu
US Patent App. 13/640,804, 2015
562015
Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation
WN Hsu, Y Zhang, J Glass
2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 16-23, 2017
492017
Simple recurrent units for highly parallelizable recurrence
T Lei, Y Zhang, SI Wang, H Dai, Y Artzi
arXiv preprint arXiv:1709.02755, 2017
492017
Joint learning of phonetic units and word pronunciations for ASR
C Lee, Y Zhang, J Glass
Proceedings of the 2013 Conference on Empirical Methods in Natural Language …, 2013
382013
Latent sequence decompositions
W Chan, Y Zhang, Q Le, N Jaitly
arXiv preprint arXiv:1610.03035, 2016
372016
Speaker-aware training of LSTM-RNNs for acoustic modelling
T Tan, Y Qian, D Yu, S Kundu, L Lu, KC Sim, X Xiao, Y Zhang
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
362016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20