Kyle Robert Harrison
Kyle Robert Harrison
Research Associate, UNSW Canberra
Verified email at unsw.edu.au - Homepage
Title
Cited by
Cited by
Year
Inertia weight control strategies for particle swarm optimization
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
Swarm Intelligence 10 (4), 267-305, 2016
352016
Self-adaptive particle swarm optimization: A review and analysis of convergence
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
Swarm Intelligence 12 (3), 187-226, 2018
242018
Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
Swarm and evolutionary computation 41, 20-35, 2018
202018
The sad state of self-adaptive particle swarm optimizers
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
2016 IEEE Congress on Evolutionary Computation (CEC), 431-439, 2016
182016
Knowledge transfer strategies for vector evaluated particle swarm optimization
KR Harrison, B Ombuki-Berman, AP Engelbrecht
International Conference on Evolutionary Multi-Criterion Optimization, 171-184, 2013
172013
A meta-analysis of centrality measures for comparing and generating complex network models
KR Harrison, M Ventresca, BM Ombuki-Berman
Journal of computational science 17, 205-215, 2016
152016
An experimental evaluation of multi-objective evolutionary algorithms for detecting critical nodes in complex networks
M Ventresca, KR Harrison, BM Ombuki-Berman
European Conference on the Applications of Evolutionary Computation, 164-176, 2015
152015
The bi-objective critical node detection problem
M Ventresca, KR Harrison, BM Ombuki-Berman
European Journal of Operational Research 265 (3), 895-908, 2018
122018
Optimal parameter regions for particle swarm optimization algorithms
KR Harrison, BM Ombuki-Berman, AP Engelbrecht
2017 IEEE Congress on Evolutionary Computation (CEC), 349-356, 2017
92017
An adaptive particle swarm optimization algorithm based on optimal parameter regions
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1-8, 2017
82017
Dynamic multi-objective optimization using charged vector evaluated particle swarm optimization
KR Harrison, BM Ombuki-Berman, AP Engelbrecht
2014 IEEE Congress on Evolutionary Computation (CEC), 1929-1936, 2014
72014
A Scalability Study of Multi-Objective Particle Swarm Optimizers
KR Harrison, AP Engelbrecht, BM Ombuki-Berman
2013 IEEE Congress on Evolutionary Computation (CEC), 189-197, 2013
72013
Incorporating expert knowledge in object-oriented genetic programming
MR Medland, KR Harrison, B Ombuki-Berman
Proceedings of the Companion Publication of the 2014 Annual Conference on …, 2014
62014
Investigating fitness measures for the automatic construction of graph models
KR Harrison, M Ventresca, BM Ombuki-Berman
European Conference on the Applications of Evolutionary Computation, 189-200, 2015
52015
Demonstrating the power of object-oriented genetic programming via the inference of graph models for complex networks
MR Medland, KR Harrison, BM Ombuki-Berman
2014 Sixth World Congress on Nature and Biologically Inspired Computing …, 2014
52014
A radius-free quantum particle swarm optimization technique for dynamic optimization problems
KR Harrison, BM Ombuki-Berman, AP Engelbrecht
2016 IEEE Congress on Evolutionary Computation (CEC), 578-585, 2016
42016
Network Similarity Measures and Automatic Construction of Graph Models using Genetic Programming
KR Harrison
Brock University, 2014
42014
A parameter-free particle swarm optimization algorithm using performance classifiers
KR Harrison, BM Ombuki-Berman, AP Engelbrecht
Information Sciences 503, 381-400, 2019
22019
Automatic inference of graph models for directed complex networks using genetic programming
MR Medland, KR Harrison, BM Ombuki-Berman
2016 IEEE Congress on Evolutionary Computation (CEC), 2337-2344, 2016
22016
The Effect of Probability Distributions on the Performance of Quantum Particle Swarm Optimization for Solving Dynamic Optimization Problems
KR Harrison, BM Ombuki-Berman, AP Engelbrecht
Computational Intelligence, 2015 IEEE Symposium Series on, 242-250, 2015
22015
The system can't perform the operation now. Try again later.
Articles 1–20