Positive definite and definitizable functions Z Sasvári
(No Title), 1994
201 1994 Multivariate characteristic and correlation functions Z Sasvári
Walter de Gruyter, 2013
119 2013 Characteristic functions and moment sequences: positive definiteness in probability TM Bisgaard, Z Sasvári
Nova Publishers, 2000
99 2000 Analogies and correspondences between variograms and covariance functions T Gneiting, Z Sasvári, M Schlather
Advances in Applied Probability 33 (3), 617-630, 2001
90 2001 Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy S Vock, C Hengst, M Wolf, K Tschulik, M Uhlemann, Z Sasvári, D Makarov, ...
Applied Physics Letters 105 (17), 2014
64 2014 The characterization problem for isotropic covariance functions T Gneiting, Z Sasvári
Mathematical Geology 31, 105-111, 1999
51 1999 On potentially negative space time covariances obtained as sum of products of marginal ones P Gregori, E Porcu, J Mateu, Z Sasvári
Annals of the Institute of Statistical Mathematics 60 (4), 865-882, 2008
48 2008 Inequalities for binomial coefficients Z Sasvári
Journal of Mathematical Analysis and Applications 236 (1), 223-226, 1999
43 1999 An elementary proof of Binet's formula for the gamma function Z Sasvari
The American mathematical monthly 106 (2), 156-158, 1999
30 1999 Quantitative Magnetic Force Microscopy Study of the Diameter Evolution of Bubble Domains in a Multilayer S Vock, Z Sasvári, C Bran, F Rhein, U Wolff, NS Kiselev, AN Bogdanov, ...
IEEE transactions on magnetics 47 (10), 2352-2355, 2011
29 2011 Continuations of Hermitian indefinite functions and corresponding canonical systems: an example H Langer, M Langer, Z Sasvári
Methods of Functional Analysis and Topology 10 (1), 39-53, 2004
21 2004 The extension problem for positive definite functions. A short historical survey Z Sasvári
Operator Theory and Indefinite Inner Product Spaces: Presented on the …, 2006
20 2006 On the positive definiteness of certain functions T Maack, Z Sasvári
Mathematische Nachrichten 186 (1), 81-99, 1997
16 1997 Tight bounds for the normal distribution: 10611 Z Sasvári, H Chen
The American Mathematical Monthly 106 (1), 76-76, 1999
14 1999 Functions with a finite number of negative squares on semigroups C Berg, Z Sasvári
Monatshefte für Mathematik 107, 9-34, 1989
14 1989 Characterizing the distributions of the random variablesX 1 ,X 2 ,X 3 by the distribution of (X 1 -X 3 ,X 2 -X 3 ) Z Sasvári
Probability theory and related fields 73 (1), 43-49, 1986
14 1986 Definisierbare funktionen auf gruppen Z Sasvári
Instytut Matematyczny Polskiej Akademi Nauk (Warszawa), 1989
12 1989 The role of the inhomogeneous demagnetizing field on the reversal mechanism in nanowire arrays S Vock, C Hengst, Z Sasvári, R Schäfer, L Schultz, V Neu
Journal of Physics D: Applied Physics 50 (47), 475002, 2017
11 2017 When does E (Xk· Yl)= E (Xk)· E (Yl) imply independence? TM Bisgaard, Z Sasvári
Statistics & probability letters 76 (11), 1111-1116, 2006
11 2006 On a classical theorem in the theory of Fourier integrals Z Sasvári
Proceedings of the American Mathematical Society, 711-713, 1998
11 1998