Gabriel Barrenechea
TítuloCitado porAño
An unusual stabilized finite element method for a generalized Stokes problem
GR Barrenechea, F Valentin
Numerische Mathematik 92 (4), 653-677, 2002
862002
Stabilized finite element methods based on multiscale enrichment for the Stokes problem
R Araya, GR Barrenechea, F Valentin
SIAM Journal on Numerical Analysis 44 (1), 322-348, 2006
782006
Analysis of algebraic flux correction schemes
G Barrenechea, V John, P Knobloch
SIAM Journal on Numerical Analysis 54 (4), 2427--2451, 2016
422016
Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes
GR Barrenechea, E Burman, F Karakatsani
Numerische mathematik 135 (2), 521-545, 2017
332017
Consistent local projection stabilized finite element methods
GR Barrenechea, F Valentin
SIAM Journal on Numerical Analysis 48 (5), 1801-1825, 2010
332010
A Petrov–Galerkin enriched method: A mass conservative finite element method for the Darcy equation
GR Barrenechea, LP Franca, F Valentin
Computer Methods in Applied Mechanics and Engineering 196 (21-24), 2449-2464, 2007
322007
Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions
M Ainsworth, A Allendes, GR Barrenechea, R Rankin
International Journal for Numerical Methods in Fluids 73 (9), 765-790, 2013
282013
New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains
GR Barrenechea, P Le Tallec, F Valentin
ESAIM: Mathematical Modelling and Numerical Analysis 36 (2), 177-203, 2002
222002
Convergence analysis of a residual local projection finite element method for the Navier–Stokes equations
R Araya, GR Barrenechea, AH Poza, F Valentin
SIAM Journal on Numerical Analysis 50 (2), 669-699, 2012
212012
A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
GR Barrenechea, V John, P Knobloch
ESAIM: Mathematical Modelling and Numerical Analysis 47 (5), 1335-1366, 2013
202013
An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes
GR Barrenechea, V John, P Knobloch
Mathematical Models and Methods in Applied Sciences 27 (03), 525-548, 2017
192017
A residual local projection method for the Oseen equation
GR Barrenechea, F Valentin
Computer Methods in Applied Mechanics and Engineering 199 (29-32), 1906-1921, 2010
192010
Stabilization arising from PGEM: A review and further developments
R Araya, GR Barrenechea, LP Franca, F Valentin
Applied Numerical Mathematics 59 (9), 2065-2081, 2009
19*2009
An adaptive stabilized finite element method for the generalized Stokes problem
R Araya, GR Barrenechea, A Poza
Journal of Computational and Applied Mathematics 214 (2), 457-479, 2008
192008
Relationship between multiscale enrichment and stabilized finite element methods for the generalized Stokes problem
GR Barrenechea, F Valentin
Comptes Rendus Mathematique 341 (10), 635-640, 2005
192005
Primal mixed formulations for the coupling of FEM and BEM. Part I: Linear problems
GR Barrenechea, GN Gatica, JM Thomas
Numerical functional analysis and optimization 19 (1-2), 7-32, 1998
181998
A stabilized finite-element method for the Stokes problem including element and edge residuals
R Araya, GR Barrenechea, F Valentin
IMA journal of numerical analysis 27 (1), 172-197, 2007
172007
Some analytical results for an algebraic flux correction scheme for a steady convection–diffusion equation in one dimension
GR Barrenechea, V John, P Knobloch
IMA Journal of Numerical Analysis 35, 1729--1756, 2014
162014
Beyond pressure stabilization: A low‐order local projection method for the Oseen equation
GR Barrenechea, F Valentin
International Journal for Numerical Methods in Engineering 86 (7), 801-815, 2011
162011
A local projection stabilized method for fictitious domains
GR Barrenechea, F Chouly
Applied Mathematics Letters 25 (12), 2071-2076, 2012
152012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20