Wouter Duivesteijn
Wouter Duivesteijn
Dirección de correo verificada de tue.nl - Página principal
Título
Citado por
Citado por
Año
Exceptional model mining
W Duivesteijn, AJ Feelders, A Knobbe
Data Mining and Knowledge Discovery 30 (1), 47-98, 2016
1072016
Nearest neighbour classification with monotonicity constraints
W Duivesteijn, A Feelders
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2008
922008
Subgroup discovery meets bayesian networks--an exceptional model mining approach
W Duivesteijn, A Knobbe, A Feelders, M van Leeuwen
2010 IEEE International Conference on Data Mining, 158-167, 2010
592010
Exploiting false discoveries--statistical validation of patterns and quality measures in subgroup discovery
W Duivesteijn, A Knobbe
2011 IEEE 11th International Conference on Data Mining, 151-160, 2011
472011
Benefits of a short, practical questionnaire to measure subjective perception of nasal appearance after aesthetic rhinoplasty
PJFM Lohuis, S Hakim, W Duivesteijn, A Knobbe, AJ Tasman
Plastic and reconstructive surgery 132 (6), 913e-923e, 2013
342013
Different slopes for different folks: mining for exceptional regression models with cook's distance
W Duivesteijn, A Feelders, A Knobbe
Proceedings of the 18th ACM SIGKDD international conference on Knowledge …, 2012
252012
Multilayer perceptron for label ranking
G Ribeiro, W Duivesteijn, C Soares, A Knobbe
International Conference on Artificial Neural Networks, 25-32, 2012
242012
Split hump technique for reduction of the overprojected nasal dorsum: a statistical analysis on subjective body image in relation to nasal appearance and nasal patency in 97 …
PJFM Lohuis, S Faraj-Hakim, A Knobbe, W Duivesteijn, GM Bran
Archives of facial plastic surgery 14 (5), 346-353, 2012
222012
Understanding where your classifier does (not) work--the SCaPE model class for EMM
W Duivesteijn, J Thaele
2014 IEEE International Conference on Data Mining, 809-814, 2014
212014
Exceptionally monotone models—the rank correlation model class for exceptional model mining
L Downar, W Duivesteijn
Knowledge and Information Systems 51 (2), 369-394, 2017
152017
Exceptional preferences mining
CR de Sá, W Duivesteijn, C Soares, A Knobbe
International Conference on Discovery Science, 3-18, 2016
152016
Cost-based quality measures in subgroup discovery
RM Konijn, W Duivesteijn, M Meeng, A Knobbe
Journal of Intelligent Information Systems 45 (3), 337-355, 2015
132015
Discovering local subgroups, with an application to fraud detection
RM Konijn, W Duivesteijn, W Kowalczyk, A Knobbe
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 1-12, 2013
112013
Discovering a taste for the unusual: exceptional models for preference mining
CR de Sá, W Duivesteijn, P Azevedo, AM Jorge, C Soares, A Knobbe
Machine Learning 107 (11), 1775-1807, 2018
102018
Multi-label LeGo—enhancing multi-label classifiers with local patterns
W Duivesteijn, EL Mencía, J Fürnkranz, A Knobbe
International Symposium on Intelligent Data Analysis, 114-125, 2012
92012
Subjectively interesting subgroup discovery on real-valued targets
J Lijffijt, B Kang, W Duivesteijn, K Puolamaki, E Oikarinen, T De Bie
2018 IEEE 34th International Conference on Data Engineering (ICDE), 1352-1355, 2018
82018
ROCsearch — An ROC-guided Search Strategy for Subgroup Discovery
M Meeng, W Duivesteijn, A Knobbe
Proceedings of the 2014 SIAM International Conference on Data Mining, 704-712, 2014
82014
Interpretable domain adaptation via optimization over the Stiefel manifold
C Pölitz, W Duivesteijn, K Morik
Machine Learning 104 (2-3), 315-336, 2016
52016
ELBA: Exceptional Learning Behavior Analysis.
X Du, W Duivesteijn, M Klabbers, M Pechenizkiy
International Educational Data Mining Society, 2018
42018
Behavioral Topic modeling on naturalistic driving data
S Merino, M Atzmueller
Proceedings of BNAIC. Jheronimus Academy of Data Science, Den Bosch, The …, 2018
32018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20