Martin Danelljan
Martin Danelljan
Postdoc, ETH Zurich
Dirección de correo verificada de vision.ee.ethz.ch - Página principal
Título
Citado por
Citado por
Año
Accurate scale estimation for robust visual tracking
M Danelljan, G Häger, F Khan, M Felsberg
British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014
15092014
Adaptive color attributes for real-time visual tracking
M Danelljan, F Shahbaz Khan, M Felsberg, J Van de Weijer
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014
11982014
Learning spatially regularized correlation filters for visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE international conference on computer vision, 4310-4318, 2015
11192015
The visual object tracking vot2015 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernandez, ...
Proceedings of the IEEE international conference on computer vision …, 2015
10442015
Beyond correlation filters: Learning continuous convolution operators for visual tracking
M Danelljan, A Robinson, FS Khan, M Felsberg
European conference on computer vision, 472-488, 2016
9242016
Eco: Efficient convolution operators for tracking
M Danelljan, G Bhat, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE conference on computer vision and pattern …, 2017
8922017
Convolutional features for correlation filter based visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE International Conference on Computer Vision …, 2015
6122015
Discriminative scale space tracking
M Danelljan, G Häger, FS Khan, M Felsberg
IEEE transactions on pattern analysis and machine intelligence 39 (8), 1561-1575, 2016
5422016
Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
2572016
The sixth visual object tracking vot2018 challenge results
M Kristan, A Leonardis, J Matas, M Felsberg, R Pflugfelder, ...
Proceedings of the European Conference on Computer Vision (ECCV), 0-0, 2018
1642018
Unveiling the power of deep tracking
G Bhat, J Johnander, M Danelljan, F Shahbaz Khan, M Felsberg
Proceedings of the European Conference on Computer Vision (ECCV), 483-498, 2018
1202018
Atom: Accurate tracking by overlap maximization
M Danelljan, G Bhat, FS Khan, M Felsberg
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
962019
The thermal infrared visual object tracking VOT-TIR2015 challenge results
M Felsberg, A Berg, G Hager, J Ahlberg, M Kristan, J Matas, A Leonardis, ...
Proceedings of the IEEE International Conference on Computer Vision …, 2015
912015
Deep projective 3D semantic segmentation
FJ Lawin, M Danelljan, P Tosteberg, G Bhat, FS Khan, M Felsberg
International Conference on Computer Analysis of Images and Patterns, 95-107, 2017
642017
Deep motion features for visual tracking
S Gladh, M Danelljan, FS Khan, M Felsberg
2016 23rd international conference on pattern recognition (ICPR), 1243-1248, 2016
542016
Learning discriminative model prediction for tracking
G Bhat, M Danelljan, LV Gool, R Timofte
Proceedings of the IEEE International Conference on Computer Vision, 6182-6191, 2019
502019
A probabilistic framework for color-based point set registration
M Danelljan, G Meneghetti, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
302016
Coloring channel representations for visual tracking
M Danelljan, G Häger, FS Khan, M Felsberg
Scandinavian Conference on Image Analysis, 117-129, 2015
262015
Aim 2019 challenge on real-world image super-resolution: Methods and results
A Lugmayr, M Danelljan, R Timofte, M Fritsche, S Gu, K Purohit, ...
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW …, 2019
242019
Unsupervised learning for real-world super-resolution
A Lugmayr, M Danelljan, R Timofte
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW …, 2019
232019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20