José Luis Aznarte
José Luis Aznarte
Associate Professor. Artificial Intelligence Department, UNED.
Dirección de correo verificada de - Página principal
Citado por
Citado por
Shapley additive explanations for NO2 forecasting
MV García, JL Aznarte
Ecological Informatics 56, 101039, 2020
Empirical study of feature selection methods based on individual feature evaluation for classification problems
A Arauzo-Azofra, JL Aznarte, JM Benítez
Expert systems with applications 38 (7), 8170-8177, 2011
Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models
JL Aznarte, D Nieto-Lugilde, C de Linares Fernández, CD de la Guardia, ...
Expert Systems with Applications 32 (4), 1218-1225, 2007
Dynamic line rating using numerical weather predictions and machine learning: A case study
JL Aznarte, N Siebert
IEEE Transactions on Power Delivery 32 (1), 335-343, 2016
Predicting air quality with deep learning LSTM: Towards comprehensive models
R Navares, JL Aznarte
Ecological Informatics 55, 101019, 2020
Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks
V Sevillano, JL Aznarte
PloS one 13 (9), e0201807, 2018
Photovoltaic Forecasting: A state of the art
B Espinar, JL Aznarte, R Girard, AM Moussa, G Kariniotakis
5th European PV-Hybrid and Mini-Grid Conference, Pages 250-255-ISBN 978-3 …, 2010
Precise automatic classification of 46 different pollen types with convolutional neural networks
V Sevillano, K Holt, JL Aznarte
Plos one 15 (6), e0229751, 2020
A spatio-temporal attention-based spot-forecasting framework for urban traffic prediction
R de Medrano, JL Aznarte
Applied Soft Computing 96, 106615, 2020
Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences
JL Aznarte, JM Benítez, JL Castro
Fuzzy sets and systems 158 (24), 2734-2745, 2007
Financial time series forecasting with a bio-inspired fuzzy model
JL Aznarte, J Alcalá-Fdez, A Arauzo-Azofra, JM Benítez
Expert Systems with Applications 39 (16), 12302-12309, 2012
Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid
R Navares, J Díaz, C Linares, JL Aznarte
Stochastic environmental research and risk assessment 32, 2849-2859, 2018
Earthquake magnitude prediction based on artificial neural networks: A survey
E Florido, JL Aznarte, A Morales-Esteban, F Martínez-Álvarez
Croatian Operational Research Review, 159-169, 2016
Probabilistic forecasting for extreme NO2 pollution episodes
JL Aznarte
Environmental Pollution 229, 321-328, 2017
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
K Sherratt, H Gruson, H Johnson, R Niehus, B Prasse, F Sandmann, ...
Elife 12, e81916, 2023
Time series modeling and forecasting using memetic algorithms for regime-switching models
C Bergmeir, I Triguero, D Molina, JL Aznarte, JM Benitez
IEEE transactions on neural networks and learning systems 23 (11), 1841-1847, 2012
Equivalences between neural-autoregressive time series models and fuzzy systems
JL Aznarte, JM Benítez
IEEE transactions on neural networks 21 (9), 1434-1444, 2010
SatDNA Analyzer: a computing tool for satellite-DNA evolutionary analysis
R Navajas-Perez, C Rubio-Escudero, JL Aznarte, MR Rejon, ...
Bioinformatics 23 (6), 767-768, 2007
Deep learning improves taphonomic resolution: high accuracy in differentiating tooth marks made by lions and jaguars
B Jiménez-García, J Aznarte, N Abellán, E Baquedano, ...
Journal of the Royal Society Interface 17 (168), 20200446, 2020
Deep learning classification of tooth scores made by different carnivores: achieving high accuracy when comparing African carnivore taxa and testing the hominin shift in the …
N Abellán, B Jiménez-García, J Aznarte, E Baquedano, ...
Archaeological and Anthropological Sciences 13, 1-14, 2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20