Beatriz Remeseiro
Beatriz Remeseiro
Associate Professor, University of Oviedo
Dirección de correo verificada de - Página principal
Citado por
Citado por
A review of feature selection methods in medical applications
B Remeseiro, V Bolon-Canedo
Computers in biology and medicine 112, 103375, 2019
Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants
E Aguilar, B Remeseiro, M Bolaños, P Radeva
IEEE Transactions on Multimedia 20 (12), 3266-3275, 2018
Feature selection in image analysis: a survey
V Bolón-Canedo, B Remeseiro
Artificial Intelligence Review, 1-27, 2019
A Methodology for Improving Tear Film Lipid Layer Classification
B Remeseiro, V Bolon-Canedo, D Peteiro-Barral, A Alonso-Betanzos, ...
IEEE Journal of Biomedical and Health Informatics 18 (4), 1485 - 1493, 2014
Semantic segmentation with DenseNets for carotid artery ultrasound plaque segmentation and CIMT estimation
M del Mar Vila, B Remeseiro, M Grau, R Elosua, À Betriu, ...
Artificial Intelligence in Medicine 103, 101784, 2020
Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification
B Remeseiro, M Penas, A Mosquera, J Novo, MG Penedo, ...
Computational and mathematical methods in medicine 2012 (1), 207315, 2012
Automatic cyst detection in OCT retinal images combining region flooding and texture analysis
A González, B Remeseiro, M Ortega, MG Penedo, P Charlon
Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International …, 2013
Correlation between tear osmolarity and tear meniscus
C García-Resúa, H Pena-Verdeal, B Remeseiro, MJ Giráldez, ...
Optometry and Vision Science 91 (12), 1419-1429, 2014
Automatic classification of the interferential tear film lipid layer using colour texture analysis
B Remeseiro, M Penas, N Barreira, A Mosquera, J Novo, C García-Resúa
Computer methods and programs in biomedicine 111 (1), 93-103, 2013
A preliminary study of image analysis for parasite detection on honey bees
S Schurischuster, B Remeseiro, P Radeva, M Kampel
Image Analysis and Recognition: 15th International Conference, ICIAR 2018 …, 2018
Towards explainable personalized recommendations by learning from users’ photos
J Díez, P Pérez-Núñez, O Luaces, B Remeseiro, A Bahamonde
Information Sciences 520, 416-430, 2020
CASDES: a computer-aided system to support dry eye diagnosis based on tear film maps
B Remeseiro, A Mosquera, MG Penedo
IEEE journal of biomedical and health informatics 20 (3), 936-943, 2015
Texture and color analysis for the automatic classification of the eye lipid layer
L Ramos, M Penas, B Remeseiro, A Mosquera, N Barreira, ...
Advances in Computational Intelligence: 11th International Work-Conference …, 2011
Colour texture analysis for classifying the tear film lipid layer: a comparative study
B Remeseiro, L Ramos, M Penas, E Martinez, MG Penedo, A Mosquera
Digital Image Computing Techniques and Applications (DICTA), 2011 …, 2011
iDEAS: a web-based system for dry eye assessment
B Remeseiro, N Barreira, C García-Resúa, M Lira, MJ Giraldez, ...
Computer methods and programs in biomedicine 130, 186-197, 2016
Color texture analysis for tear film classification: a preliminary study
D Calvo, A Mosquera, M Penas, C García-Resúa, B Remeseiro
Image Analysis and Recognition: 7th International Conference, ICIAR 2010 …, 2010
Automatic detection of defective crankshafts by image analysis and supervised classification
B Remeseiro, J Tarrío-Saavedra, M Francisco-Fernández, MG Penedo, ...
The International Journal of Advanced Manufacturing Technology, 1-17, 2019
Evaluation of an automatic dry eye test using MCDM methods and rank correlation
D Peteiro-Barral, B Remeseiro, R Méndez, MG Penedo
Medical & biological engineering & computing 55 (4), 527-536, 2017
Automatic drusen detection from digital retinal images: AMD prevention
B Remeseiro, N Barreira, D Calvo, M Ortega, MG Penedo
International Conference on Computer Aided Systems Theory, 187-194, 2009
Objective quality assessment of retinal images based on texture features
B Remeseiro, AM Mendonça, A Campilho
2017 International Joint Conference on Neural Networks (IJCNN), 4520-4527, 2017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20