Gerhard Rigoll
Gerhard Rigoll
Professor for Human-Machine Communication, TU München
Dirección de correo verificada de - Página principal
Citado por
Citado por
Hidden Markov model-based speech emotion recognition
B Schuller, G Rigoll, M Lang
2003 IEEE International Conference on Acoustics, Speech, and Signal …, 2003
Background segmentation with feedback: The pixel-based adaptive segmenter
M Hofmann, P Tiefenbacher, G Rigoll
2012 IEEE computer society conference on computer vision and pattern …, 2012
SVC2004: First international signature verification competition
DY Yeung, H Chang, Y Xiong, S George, R Kashi, T Matsumoto, G Rigoll
International conference on biometric authentication, 16-22, 2004
Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture
B Schuller, G Rigoll, M Lang
2004 IEEE international conference on acoustics, speech, and signal …, 2004
Cross-corpus acoustic emotion recognition: Variances and strategies
B Schuller, B Vlasenko, F Eyben, M Wöllmer, A Stuhlsatz, A Wendemuth, ...
IEEE Transactions on Affective Computing 1 (2), 119-131, 2010
A deep convolutional neural network for video sequence background subtraction
M Babaee, DT Dinh, G Rigoll
Pattern Recognition 76, 635-649, 2018
Acoustic emotion recognition: A benchmark comparison of performances
B Schuller, B Vlasenko, F Eyben, G Rigoll, A Wendemuth
2009 IEEE Workshop on Automatic Speech Recognition & Understanding, 552-557, 2009
LSTM-modeling of continuous emotions in an audiovisual affect recognition framework
M Wöllmer, M Kaiser, F Eyben, B Schuller, G Rigoll
Image and Vision Computing 31 (2), 153-163, 2013
Speaker adaptation for large vocabulary speech recognition systems using speaker Markov models
G Rigoll
International Conference on Acoustics, Speech, and Signal Processing,, 5-8, 1989
Recognition of JPEG compressed face images based on statistical methods
S Eickeler, S Müller, G Rigoll
Image and Vision Computing 18 (4), 279-287, 2000
Being bored? Recognising natural interest by extensive audiovisual integration for real-life application
B Schuller, R Müller, F Eyben, J Gast, B Hörnler, M Wöllmer, G Rigoll, ...
Image and Vision Computing 27 (12), 1760-1774, 2009
The TUM Gait from Audio, Image and Depth (GAID) database: Multimodal recognition of subjects and traits
M Hofmann, J Geiger, S Bachmann, B Schuller, G Rigoll
Journal of Visual Communication and Image Representation 25 (1), 195-206, 2014
Combining long short-term memory and dynamic bayesian networks for incremental emotion-sensitive artificial listening
M Wöllmer, B Schuller, F Eyben, G Rigoll
IEEE Journal of selected topics in signal processing 4 (5), 867-881, 2010
High performance real-time gesture recognition using hidden markov models
G Rigoll, A Kosmala, S Eickeler
International Gesture Workshop, 69-80, 1997
Speaker independent emotion recognition by early fusion of acoustic and linguistic features within ensemble
B Schuller, R Müller, M Lang, G Rigoll
Proc. of Interspeech 2005-Proc. Europ. Conf. on Speech Communication and …, 2005
Speaker independent speech emotion recognition by ensemble classification
B Schuller, S Reiter, R Muller, M Al-Hames, M Lang, G Rigoll
2005 IEEE international conference on multimedia and expo, 864-867, 2005
Multi-view gait recognition using 3D convolutional neural networks
T Wolf, M Babaee, G Rigoll
2016 IEEE international conference on image processing (ICIP), 4165-4169, 2016
Hidden markov model based continuous online gesture recognition
S Eickeler, A Kosmala, G Rigoll
Proceedings. Fourteenth International Conference on Pattern Recognition (Cat …, 1998
A systematic comparison between on-line and off-line methods for signature verification with hidden Markov models
G Rigoll, A Kosmala
Proceedings. Fourteenth International Conference on Pattern Recognition (Cat …, 1998
Large-scale audio feature extraction and SVM for acoustic scene classification
JT Geiger, B Schuller, G Rigoll
2013 IEEE Workshop on Applications of Signal Processing to Audio and …, 2013
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20