Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help S Cordier, MH Le, TM De Luna Advances in Water Resources 34 (8), 980-989, 2011 | 115 | 2011 |

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment F Bouchut, TM de Luna ESAIM: Mathematical Modelling and Numerical Analysis 42 (4), 683-698, 2008 | 107 | 2008 |

A subsonic-well-balanced reconstruction scheme for shallow water flows F Bouchut, TM De Luna SIAM Journal on Numerical Analysis 48 (5), 1733-1758, 2010 | 71 | 2010 |

Well-balanced schemes and path-conservative numerical methods MJ Castro, TM de Luna, C Parés Handbook of Numerical Analysis 18, 131-175, 2017 | 63 | 2017 |

On a shallow water model for the simulation of turbidity currents T Morales de Luna, MJ Castro Díaz, C Parés Madroñal, ... Communications in computational physics, 6 (4), 848-882., 2009 | 58 | 2009 |

Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme C Escalante, TM de Luna, MJ Castro Applied Mathematics and Computation 338, 631-659, 2018 | 46 | 2018 |

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport MJ Castro Díaz, ED Fernández-Nieto, T Morales de Luna, ... ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2013 | 42 | 2013 |

Formal deduction of the Saint-Venant–Exner model including arbitrarily sloping sediment beds and associated energy ED Fernández-Nieto, TM de Luna, G Narbona-Reina, J de Dieu Zabsonré ESAIM: Mathematical Modelling and Numerical Analysis 51 (1), 115-145, 2017 | 40 | 2017 |

Reliability of first order numerical schemes for solving shallow water system over abrupt topography TM de Luna, MJC Diaz, C Parés Applied Mathematics and Computation 219 (17), 9012-9032, 2013 | 38 | 2013 |

A HLLC scheme for Ripa model C Sánchez-Linares, TM De Luna, MJC Díaz Applied Mathematics and Computation 272, 369-384, 2016 | 37 | 2016 |

A multilayer shallow water system for polydisperse sedimentation ED Fernández-Nieto, EH Koné, TM De Luna, R Bürger Journal of Computational Physics 238, 281-314, 2013 | 31 | 2013 |

On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems ED Fernandez-Nieto, C Lucas, TM de Luna, S Cordier Computers & Fluids 91, 87-106, 2014 | 29 | 2014 |

A duality method for sediment transport based on a modified Meyer-Peter & Müller model T Morales de Luna, MJ Castro Díaz, C Parés Madroñal Journal of Scientific Computing 48 (1), 258-273, 2011 | 21 | 2011 |

An efficient two-layer non-hydrostatic approach for dispersive water waves C Escalante, ED Fernández-Nieto, T Morales de Luna, MJ Castro Journal of Scientific Computing 79 (1), 273-320, 2019 | 20 | 2019 |

Derivation of a multilayer approach to model suspended sediment transport: Application to hyperpycnal and hypopycnal plumes TM de Luna, EDF Nieto, MJC Díaz Communications in Computational Physics 22 (5), 1439-1485, 2017 | 20 | 2017 |

Semi-discrete entropy satisfying approximate Riemann solvers. The case of the Suliciu relaxation approximation F Bouchut, T Morales de Luna Journal of Scientific Computing 41 (3), 483-509, 2009 | 18 | 2009 |

A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation C Escalante, TM de Luna Journal of Scientific Computing 83 (3), 1-37, 2020 | 16 | 2020 |

Path-conservative central-upwind schemes for nonconservative hyperbolic systems MJC Díaz, A Kurganov, TM de Luna ESAIM: Mathematical Modelling and Numerical Analysis 53 (3), 959-985, 2019 | 16 | 2019 |

A Fully Well-Balanced Lagrange--Projection-Type Scheme for the Shallow-Water Equations MJ Castro Diaz, C Chalons, TM De Luna SIAM Journal on Numerical Analysis 56 (5), 3071-3098, 2018 | 16 | 2018 |

Relation between PVM schemes and simple Riemann solvers T Morales de Luna, MJ Castro Diaz, C Parés Numerical Methods for Partial Differential Equations 30 (4), 1315-1341, 2014 | 14 | 2014 |