Seguir
Kun Zhang
Kun Zhang
Carnegie Mellon University & Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)
Dirección de correo verificada de cmu.edu - Página principal
Título
Citado por
Citado por
Año
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ...
arXiv preprint arXiv:1811.02629, 2018
8632018
Multi-label learning by exploiting label dependency
ML Zhang, K Zhang
Proceedings of the 16th ACM SIGKDD international conference on Knowledge …, 2010
5162010
Domain adaptation under target and conditional shift
K Zhang, B Schölkopf, K Muandet, Z Wang
International Conference on Machine Learning, 819-827, 2013
4722013
Kernel-based conditional independence test and application in causal discovery
K Zhang, J Peters, D Janzing, B Schölkopf
arXiv preprint arXiv:1202.3775, 2012
4172012
On the identifiability of the post-nonlinear causal model
K Zhang, A Hyvarinen
arXiv preprint arXiv:1205.2599, 2012
3782012
On causal and anticausal learning
B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, J Mooij
arXiv preprint arXiv:1206.6471, 2012
3692012
On causal and anticausal learning
B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, J Mooij
arXiv preprint arXiv:1206.6471, 2012
3692012
Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation
L Li, Q Li, L Huang, Q Wang, A Zhu, J Xu, Z Liu, H Li, L Shi, R Li, M Azari, ...
Science of the Total Environment 732, 139282, 2020
3422020
On learning invariant representations for domain adaptation
H Zhao, RT Des Combes, K Zhang, G Gordon
International Conference on Machine Learning, 7523-7532, 2019
2882019
Review of causal discovery methods based on graphical models
C Glymour, K Zhang, P Spirtes
Frontiers in genetics 10, 524, 2019
2822019
Deep domain generalization via conditional invariant adversarial networks
Y Li, X Tian, M Gong, Y Liu, T Liu, K Zhang, D Tao
Proceedings of the European Conference on Computer Vision (ECCV), 624-639, 2018
2762018
Domain adaptation with conditional transferable components
M Gong, K Zhang, T Liu, D Tao, C Glymour, B Schölkopf
International conference on machine learning, 2839-2848, 2016
2752016
Inferring causation from time series in Earth system sciences
J Runge, S Bathiany, E Bollt, G Camps-Valls, D Coumou, E Deyle, ...
Nature communications 10 (1), 1-13, 2019
2712019
Information-geometric approach to inferring causal directions
D Janzing, J Mooij, K Zhang, J Lemeire, J Zscheischler, P Daniušis, ...
Artificial Intelligence 182, 1-31, 2012
2712012
Estimation of a structural vector autoregression model using non-gaussianity.
A Hyvärinen, K Zhang, S Shimizu, PO Hoyer
Journal of Machine Learning Research 11 (5), 2010
2412010
Causal discovery and inference: concepts and recent methodological advances
P Spirtes, K Zhang
Applied informatics 3 (1), 1-28, 2016
2252016
Inferring deterministic causal relations
P Daniusis, D Janzing, J Mooij, J Zscheischler, B Steudel, K Zhang, ...
arXiv preprint arXiv:1203.3475, 2012
1702012
Multi-source domain adaptation: A causal view
K Zhang, M Gong, B Schölkopf
Twenty-ninth AAAI conference on artificial intelligence, 2015
1502015
Probabilistic latent variable models for distinguishing between cause and effect
O Stegle, D Janzing, K Zhang, JM Mooij, B Schölkopf
Advances in neural information processing systems 23, 2010
1202010
Model selection for Gaussian mixture models
T Huang, H Peng, K Zhang
Statistica Sinica, 147-169, 2017
1042017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20