Markus Schedl
Markus Schedl
Full Professor at Johannes Kepler University Linz, Institute of Computational Perception
Dirección de correo verificada de jku.at - Página principal
TítuloCitado porAño
Music information retrieval: Recent developments and applications
M Schedl, E Gómez, J Urbano
Foundations and Trends® in Information Retrieval 8 (2-3), 127-261, 2014
1602014
Polyphonic piano note transcription with recurrent neural networks
S Böck, M Schedl
2012 IEEE international conference on acoustics, speech and signal …, 2012
1282012
An innovative three-dimensional user interface for exploring music collections enriched
P Knees, M Schedl, T Pohle, G Widmer
Proceedings of the 14th ACM international conference on Multimedia, 17-24, 2006
1222006
A music search engine built upon audio-based and web-based similarity measures
P Knees, T Pohle, M Schedl, G Widmer
Proceedings of the 30th annual international ACM SIGIR conference on …, 2007
1172007
The neglected user in music information retrieval research
M Schedl, A Flexer, J Urbano
Journal of Intelligent Information Systems 41 (3), 523-539, 2013
1092013
Evaluating the Online Capabilities of Onset Detection Methods.
S Böck, F Krebs, M Schedl
ISMIR, 49-54, 2012
1042012
A survey of music similarity and recommendation from music context data
P Knees, M Schedl
ACM Transactions on Multimedia Computing, Communications, and Applications …, 2013
1002013
Local and global scaling reduce hubs in space
D Schnitzer, A Flexer, M Schedl, G Widmer
Journal of Machine Learning Research 13 (Oct), 2871-2902, 2012
912012
On Rhythm and General Music Similarity.
T Pohle, D Schnitzer, M Schedl, P Knees, G Widmer
ISMIR, 525-530, 2009
902009
Music recommender systems
M Schedl, P Knees, B McFee, D Bogdanov, M Kaminskas
Recommender systems handbook, 453-492, 2015
80*2015
Using block-level features for genre classification, tag classification and music similarity estimation
K Seyerlehner, M Schedl, T Pohle, P Knees
Submission to Audio Music Similarity and Retrieval Task of MIREX 2010, 2010
792010
Location-aware music recommendation using auto-tagging and hybrid matching
M Kaminskas, F Ricci, M Schedl
Proceedings of the 7th ACM conference on Recommender systems, 17-24, 2013
752013
Enhanced beat tracking with context-aware neural networks
S Böck, M Schedl
Proc. Int. Conf. Digital Audio Effects, 135-139, 2011
712011
The million musical tweet dataset: what we can learn from microblogs
D Hauger, M Schedl, A Košir, M Tkalčič
International Society for Music Information Retrieval, 2013
702013
The lfm-1b dataset for music retrieval and recommendation
M Schedl
Proceedings of the 2016 ACM on International Conference on Multimedia …, 2016
672016
Combining audio-based similarity with web-based data to accelerate automatic music playlist generation
P Knees, T Pohle, M Schedl, G Widmer
Proceedings of the 8th ACM international workshop on Multimedia information …, 2006
662006
Current challenges and visions in music recommender systems research
M Schedl, H Zamani, CW Chen, Y Deldjoo, M Elahi
International Journal of Multimedia Information Retrieval 7 (2), 95-116, 2018
632018
Fusing social media cues: personality prediction from twitter and instagram
M Skowron, M Tkalčič, B Ferwerda, M Schedl
Proceedings of the 25th international conference companion on world wide web …, 2016
632016
The Quest for Ground Truth in Musical Artist Tagging in the Social Web Era.
G Geleijnse, M Schedl, P Knees
ISMIR, 525-530, 2007
602007
Personality traits predict music taxonomy preferences
B Ferwerda, E Yang, M Schedl, M Tkalcic
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human …, 2015
592015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20