Luke Zettlemoyer
Luke Zettlemoyer
Dirección de correo verificada de cs.washington.edu - Página principal
Título
Citado por
Citado por
Año
Deep contextualized word representations
ME Peters, M Neumann, M Iyyer, M Gardner, C Clark, K Lee, ...
arXiv preprint arXiv:1802.05365, 2018
44692018
Roberta: A robustly optimized bert pretraining approach
Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen, O Levy, M Lewis, ...
arXiv preprint arXiv:1907.11692, 2019
1151*2019
Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
LS Zettlemoyer, M Collins
Conference on Uncertainty in Artificial Intelligence (UAI), 2005
788*2005
Knowledge-based weak supervision for information extraction of overlapping relations
R Hoffmann, C Zhang, X Ling, L Zettlemoyer, DS Weld
Proceedings of the 49th annual meeting of the association for computational …, 2011
7752011
Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension
M Joshi, E Choi, DS Weld, L Zettlemoyer
arXiv preprint arXiv:1705.03551, 2017
4322017
Online learning of relaxed CCG grammars for parsing to logical form
L Zettlemoyer, M Collins
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural …, 2007
4012007
Allennlp: A deep semantic natural language processing platform
M Gardner, J Grus, M Neumann, O Tafjord, P Dasigi, N Liu, M Peters, ...
arXiv preprint arXiv:1803.07640, 2018
3972018
Weakly supervised learning of semantic parsers for mapping instructions to actions
Y Artzi, L Zettlemoyer
Transactions of the Association for Computational Linguistics 1, 49-62, 2013
3552013
Learning to parse natural language commands to a robot control system
C Matuszek, E Herbst, L Zettlemoyer, D Fox
Experimental robotics, 403-415, 2013
3472013
Open question answering over curated and extracted knowledge bases
A Fader, L Zettlemoyer, O Etzioni
Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014
3422014
End-to-end neural coreference resolution
K Lee, L He, M Lewis, L Zettlemoyer
arXiv preprint arXiv:1707.07045, 2017
3262017
Scaling semantic parsers with on-the-fly ontology matching
T Kwiatkowski, E Choi, Y Artzi, L Zettlemoyer
Proceedings of the 2013 conference on empirical methods in natural language …, 2013
3052013
Paraphrase-driven learning for open question answering
A Fader, L Zettlemoyer, O Etzioni
Proceedings of the 51st Annual Meeting of the Association for Computational …, 2013
3042013
Inducing probabilistic CCG grammars from logical form with higher-order unification
T Kwiatkowksi, L Zettlemoyer, S Goldwater, M Steedman
Proceedings of the 2010 conference on empirical methods in natural language …, 2010
3032010
Deep semantic role labeling: What works and what’s next
L He, K Lee, M Lewis, L Zettlemoyer
Proceedings of the 55th Annual Meeting of the Association for Computational …, 2017
2782017
A joint model of language and perception for grounded attribute learning
C Matuszek, N FitzGerald, L Zettlemoyer, L Bo, D Fox
arXiv preprint arXiv:1206.6423, 2012
2742012
Reinforcement learning for mapping instructions to actions
SRK Branavan, H Chen, LS Zettlemoyer, R Barzilay
Association for Computational Linguistics, 2009
2412009
Learning symbolic models of stochastic domains
HM Pasula, LS Zettlemoyer, LP Kaelbling
Journal of Artificial Intelligence Research 29, 309-352, 2007
2222007
Lifted Probabilistic Inference with Counting Formulas.
B Milch, LS Zettlemoyer, K Kersting, M Haimes, LP Kaelbling
Aaai 8, 1062-1068, 2008
2182008
Lexical generalization in CCG grammar induction for semantic parsing
T Kwiatkowski, L Zettlemoyer, S Goldwater, M Steedman
Proceedings of the 2011 Conference on Empirical Methods in Natural Language …, 2011
2132011
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20