Seguir
Antonio J. Rivera
Antonio J. Rivera
Profesor de Ingeniería Informática (Universidad de Jaén)
Dirección de correo verificada de ujaen.es
Título
Citado por
Citado por
Año
Multilabel classification
F Herrera, F Charte, AJ Rivera, MJ Jesus
Multilabel Classification, 17-31, 2016
2632016
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
F Charte, AJ Rivera, MJ del Jesus, F Herrera
Neurocomputing 163, 3-16, 2015
1962015
GP-COACH: Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems
FJ Berlanga, AJ Rivera, MJ del Jesús, F Herrera
Information Sciences 180 (8), 1183-1200, 2010
1492010
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
F Charte, AJ Rivera, MJ del Jesus, F Herrera
Knowledge-Based Systems 89, 385-397, 2015
1452015
A methodology for applying k-nearest neighbor to time series forecasting
F Martínez, MP Frías, MD Pérez, AJ Rivera
Artificial Intelligence Review 52 (3), 2019
762019
A first approach to deal with imbalance in multi-label datasets
F Charte, A Rivera, MJ Jesus, F Herrera
International conference on hybrid artificial intelligence systems, 150-160, 2013
672013
Dealing with seasonality by narrowing the training set in time series forecasting with kNN
F Martínez, MP Frías, MD Pérez-Godoy, AJ Rivera
Expert systems with applications 103, 38-48, 2018
532018
MEFASD-BD: multi-objective evolutionary fuzzy algorithm for subgroup discovery in big data environments-a mapreduce solution
F Pulgar-Rubio, AJ Rivera-Rivas, MD Pérez-Godoy, P González, ...
Knowledge-Based Systems 117, 70-78, 2017
432017
Concurrence among imbalanced labels and its influence on multilabel resampling algorithms
F Charte, A Rivera, MJ Jesus, F Herrera
International conference on hybrid artificial intelligence systems, 110-121, 2014
392014
Analysis of an evolutionary RBFN design algorithm, CO2RBFN, for imbalanced data sets
MD Pérez-Godoy, A Fernández, AJ Rivera, MJ del Jesus
Pattern Recognition Letters 31 (15), 2375-2388, 2010
392010
A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks
AJ Rivera, I Rojas, J Ortega, MJ del Jesus
Soft Computing 11 (7), 655-668, 2007
392007
Training algorithms for radial basis function networks to tackle learning processes with imbalanced data-sets
MD Pérez-Godoy, AJ Rivera, CJ Carmona, MJ del Jesus
Applied Soft Computing 25, 26-39, 2014
342014
LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification
F Charte, AJ Rivera, MJ Del Jesus, F Herrera
IEEE transactions on neural networks and learning systems 25 (10), 1842-1854, 2014
342014
Dealing with difficult minority labels in imbalanced mutilabel data sets
F Charte, AJ Rivera, MJ del Jesus, F Herrera
Neurocomputing 326, 39-53, 2019
332019
MLeNN: a first approach to heuristic multilabel undersampling
F Charte, AJ Rivera, MJ Jesus, F Herrera
International Conference on Intelligent Data Engineering and Automated …, 2014
302014
CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm for classification problems
MD Perez-Godoy, AJ Rivera, FJ Berlanga, MJ Del Jesus
Soft Computing 14 (9), 953-971, 2010
302010
QUINTA: A question tagging assistant to improve the answering ratio in electronic forums
F Charte, AJ Rivera, MJ del Jesus, F Herrera
Ieee eurocon 2015-international conference on computer as a tool (eurocon), 1-6, 2015
292015
Characterization of concentrating photovoltaic modules by cooperative competitive radial basis function networks
AJ Rivera, B García-Domingo, MJ del Jesus, J Aguilera
Expert Systems with Applications 40 (5), 1599-1608, 2013
282013
Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines
FJ Pulgar, F Charte, AJ Rivera, MJ del Jesus
Information Fusion 54, 44-60, 2020
272020
R ultimate multilabel dataset repository
F Charte, D Charte, A Rivera, MJ Jesus, F Herrera
International conference on hybrid artificial intelligence systems, 487-499, 2016
242016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20