Artificial intelligence for diabetes management and decision support: literature review I Contreras, J Vehi Journal of medical Internet research 20 (5), e10775, 2018 | 544 | 2018 |
Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning J Vehí, I Contreras, S Oviedo, L Biagi, A Bertachi Health informatics journal 26 (1), 703-718, 2020 | 89 | 2020 |
Machine learning techniques for hypoglycemia prediction: trends and challenges O Mujahid, I Contreras, J Vehi Sensors 21 (2), 546, 2021 | 86 | 2021 |
Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models I Contreras, S Oviedo, M Vettoretti, R Visentin, J Vehí PloS one 12 (11), e0187754, 2017 | 80 | 2017 |
Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor A Bertachi, C Viñals, L Biagi, I Contreras, J Vehí, I Conget, M Giménez Sensors 20 (6), 1705, 2020 | 78 | 2020 |
Prediction of Blood Glucose Levels And Nocturnal Hypoglycemia Using Physiological Models and Artificial Neural Networks. A Bertachi, L Biagi, I Contreras, N Luo, J Vehí KDH@ IJCAI, 85-90, 2018 | 75 | 2018 |
Risk-based postprandial hypoglycemia forecasting using supervised learning S Oviedo, I Contreras, C Quirós, M Giménez, I Conget, J Vehi International journal of medical informatics 126, 1-8, 2019 | 51 | 2019 |
Using Grammatical Evolution to Generate Short-term Blood Glucose Prediction Models. I Contreras, A Bertachi, L Biagi, J Vehí, S Oviedo KDH@ IJCAI, 91-96, 2018 | 34 | 2018 |
Minimizing postprandial hypoglycemia in Type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques S Oviedo, I Contreras, A Bertachi, C Quirós, M Giménez, I Conget, J Vehi Computer Methods and Programs in Biomedicine 178, 175-180, 2019 | 28 | 2019 |
Impact of use frequency of a mobile diabetes management app on blood glucose control: evaluation study J Vehi, JR Isern, A Parcerisas, R Calm, I Contreras JMIR mHealth and uHealth 7 (3), e11933, 2019 | 28 | 2019 |
A machine learning approach to minimize nocturnal hypoglycemic events in type 1 diabetic patients under multiple doses of insulin A Parcerisas, I Contreras, A Delecourt, A Bertachi, A Beneyto, I Conget, ... Sensors 22 (4), 1665, 2022 | 25 | 2022 |
Matching island topologies to problem structure in parallel evolutionary algorithms I Arnaldo, I Contreras, D Millán-Ruiz, JI Hidalgo, N Krasnogor Soft Computing 17, 1209-1225, 2013 | 25 | 2013 |
Profiling intra-patient type I diabetes behaviors I Contreras, C Quirós, M Giménez, I Conget, J Vehi Computer methods and programs in biomedicine 136, 131-141, 2016 | 23 | 2016 |
A GA combining technical and fundamental analysis for trading the stock market I Contreras, JI Hidalgo, L Núñez-Letamendia Applications of Evolutionary Computation: EvoApplications 2012: EvoCOMNET …, 2012 | 23 | 2012 |
Using a gpu-cpu architecture to speed up a ga-based real-time system for trading the stock market I Contreras, Y Jiang, JI Hidalgo, L Núñez-Letamendia Soft Computing 16, 203-215, 2012 | 20 | 2012 |
Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models J Noguer, I Contreras, O Mujahid, A Beneyto, J Vehi Sensors 22 (13), 4944, 2022 | 19 | 2022 |
Artificial Intelligence in Precision Health: From Concept to Applications D Barh Elsevier - Academic Press, 2020 | 15 | 2020 |
A hybrid clustering prediction for type 1 diabetes aid: towards decision support systems based upon scenario profile analysis I Contreras, J Vehí, R Visentin, M Vettoretti 2017 IEEE/ACM International Conference on Connected Health: Applications …, 2017 | 13 | 2017 |
Mid-term prediction of blood glucose from continuous glucose sensors, meal information and administered insulin I Contreras, J Vehi XIV Mediterranean Conference on Medical and Biological Engineering and …, 2016 | 12 | 2016 |
Conditional synthesis of blood glucose profiles for T1D patients using deep generative models O Mujahid, I Contreras, A Beneyto, I Conget, M Giménez, J Vehi Mathematics 10 (20), 3741, 2022 | 11 | 2022 |