Shiva Kasiviswanathan
Shiva Kasiviswanathan
Amazon Machine Learning
Dirección de correo verificada de amazon.com - Página principal
Título
Citado por
Citado por
Año
What can we learn privately?
SP Kasiviswanathan, HK Lee, K Nissim, S Raskhodnikova, A Smith
SIAM Journal on Computing 40 (3), 793-826, 2011
7352011
Composition attacks and auxiliary information in data privacy
SR Ganta, SP Kasiviswanathan, A Smith
Proceedings of the 14th ACM SIGKDD international conference on Knowledge …, 2008
4082008
Analyzing graphs with node differential privacy
SP Kasiviswanathan, K Nissim, S Raskhodnikova, A Smith
Theory of Cryptography Conference, 457-476, 2013
2322013
Emerging topic detection using dictionary learning
SP Kasiviswanathan, P Melville, A Banerjee, V Sindhwani
Proceedings of the 20th ACM international conference on Information and …, 2011
1622011
Simple Black-Box Adversarial Attacks on Deep Neural Networks.
N Narodytska, SP Kasiviswanathan
CVPR Workshops 2, 2017
1492017
Simple black-box adversarial perturbations for deep networks
N Narodytska, SP Kasiviswanathan
arXiv preprint arXiv:1612.06299, 2016
1492016
Verifying properties of binarized deep neural networks
N Narodytska, S Kasiviswanathan, L Ryzhyk, M Sagiv, T Walsh
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
1232018
The price of privately releasing contingency tables and the spectra of random matrices with correlated rows
SP Kasiviswanathan, M Rudelson, A Smith, J Ullman
Proceedings of the forty-second ACM symposium on Theory of computing, 775-784, 2010
1052010
Subsampled Rényi differential privacy and analytical moments accountant
YX Wang, B Balle, SP Kasiviswanathan
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
962019
On the'semantics' of differential privacy: A bayesian formulation
SP Kasiviswanathan, A Smith
Journal of Privacy and Confidentiality 6 (1), 2014
942014
Bounds on the sample complexity for private learning and private data release
A Beimel, SP Kasiviswanathan, K Nissim
Theory of Cryptography Conference, 437-454, 2010
912010
Private spatial data aggregation in the local setting
R Chen, H Li, AK Qin, SP Kasiviswanathan, H Jin
2016 IEEE 32nd International Conference on Data Engineering (ICDE), 289-300, 2016
852016
A note on differential privacy: Defining resistance to arbitrary side information
SP Kasiviswanathan, A Smith
CoRR abs/0803.3946, 2008
842008
Algorithms for Counting 2-Sat Solutions and Colorings with Applications
M Fürer, SP Kasiviswanathan
International Conference on Algorithmic Applications in Management, 47-57, 2007
692007
Efficient and practical stochastic subgradient descent for nuclear norm regularization
H Avron, S Kale, S Kasiviswanathan, V Sindhwani
arXiv preprint arXiv:1206.6384, 2012
662012
Bounds on the sample complexity for private learning and private data release
A Beimel, H Brenner, SP Kasiviswanathan, K Nissim
Machine learning 94 (3), 401-437, 2014
642014
Online L1-Dictionary Learning with Application to Novel Document Detection.
SP Kasiviswanathan, H Wang, A Banerjee, P Melville
NIPS, 2267-2275, 2012
622012
Online dictionary learning on symmetric positive definite manifolds with vision applications
S Zhang, S Kasiviswanathan, P Yuen, M Harandi
Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015
512015
Streaming anomaly detection using randomized matrix sketching
H Huang, SP Kasiviswanathan
Proceedings of the VLDB Endowment 9 (3), 192-203, 2015
442015
Efficient private empirical risk minimization for high-dimensional learning
SP Kasiviswanathan, H Jin
International Conference on Machine Learning, 488-497, 2016
422016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20