JR Quevedo
JR Quevedo
Dirección de correo verificada de aic.uniovi.es
Citado por
Citado por
Dependent binary relevance models for multi-label classification
E Montanes, R Senge, J Barranquero, JR Quevedo, JJ del Coz, ...
Pattern Recognition 47 (3), 1494-1508, 2014
Multilabel classifiers with a probabilistic thresholding strategy
JR Quevedo, O Luaces, A Bahamonde
Pattern Recognition 45 (2), 876-883, 2012
Feature subset selection for learning preferences: A case study
A Bahamonde, GF Bayón, J Díez, JR Quevedo, O Luaces, JJ Del Coz, ...
Proceedings of the twenty-first international conference on Machine learning, 7, 2004
The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry
F Goyache, A Bahamonde, J Alonso, S López, JJ Del Coz, JR Quevedo, ...
Trends in Food Science & Technology 12 (10), 370-381, 2001
Graphical feature selection for multilabel classification tasks
G Lastra, O Luaces, JR Quevedo, A Bahamonde
International Symposium on Intelligent Data Analysis, 246-257, 2011
How to learn consumer preferences from the analysis of sensory data by means of support vector machines (SVM)
A Bahamonde, J Díez, JR Quevedo, O Luaces, JJ del Coz
Trends in food science & technology 18 (1), 20-28, 2007
Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses
J Dıez, A Bahamonde, J Alonso, S López, JJ Del Coz, JR Quevedo, ...
Meat Science 64 (3), 249-258, 2003
Analyzing sensory data using non-linear preference learning with feature subset selection
O Luaces, GF Bayón, JR Quevedo, J Díez, JJ Del Coz, A Bahamonde
European Conference on Machine Learning, 286-297, 2004
Aggregating independent and dependent models to learn multi-label classifiers
E Montanés, JR Quevedo, JJ del Coz
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
Genetical genomics: use all data
M Pérez-Enciso, JR Quevedo, A Bahamonde
BMC genomics 8 (1), 1-8, 2007
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification
P Pérez-Gállego, JR Quevedo, JJ del Coz
Information Fusion 34, 87-100, 2017
Using artificial intelligence to design and implement a morphological assessment system in beef cattle
F Goyache, JJ Coz Velasco, JR Quevedo Pérez, S López, ...
Animal Science, 73, 2001
Discovering relevancies in very difficult regression problems: applications to sensory data analysis
J Díez Peláez, G Fernández Bayón, JR Quevedo Pérez, JJ Coz Velasco, ...
Proceedings of the European conference on artificial intelligence (ECAI’04), 2004
Dynamic ensemble selection for quantification tasks
P Pérez-Gállego, A Castano, JR Quevedo, JJ del Coz
Information Fusion 45, 1-15, 2019
Viability of an alarm predictor for coffee rust disease using interval regression
O Luaces, LHA Rodrigues, CAA Meira, JR Quevedo, A Bahamonde
International Conference on Industrial, Engineering and Other Applications …, 2010
A wrapper approach with support vector machines for text categorization
E Montañés, JR Quevedo, I Díaz
International Work-Conference on Artificial Neural Networks, 230-237, 2003
Self-organizing cases to find paradigms
JJ Del Coz, O Luaces, JR Quevedo, J Alonso, J Ranilla, A Bahamonde
International Work-Conference on Artificial Neural Networks, 527-536, 1999
Using A* for inference in probabilistic classifier chains
D Mena, E Montanés, JR Quevedo, JJ Del Coz
Proceedings of the 24th International Conference on Artificial Intelligence …, 2015
Collaborative tag recommendation system based on logistic regression
E Montanés, JR Quevedo, I Díaz, J Ranilla
ECML PKDD Discovery Challenge, 173-188, 2009
A simple and efficient method for variable ranking according to their usefulness for learning
JR Quevedo, A Bahamonde, O Luaces
Computational statistics & data analysis 52 (1), 578-595, 2007
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20