Jakob Richter
Jakob Richter
Dirección de correo verificada de statistik.tu-dortmund.de - Página principal
Título
Citado por
Citado por
Año
mlr: Machine Learning in R
B Bischl, M Lang, L Kotthoff, J Schiffner, J Richter, E Studerus, ...
The Journal of Machine Learning Research 17 (1), 5938-5942, 2016
5582016
mlrMBO: A modular framework for model-based optimization of expensive black-box functions
B Bischl, J Richter, J Bossek, D Horn, J Thomas, M Lang
arXiv preprint arXiv:1703.03373, 2017
1072017
Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
P Schratz, J Muenchow, E Iturritxa, J Richter, A Brenning
Ecological Modelling 406, 109-120, 2019
592019
mlr3: A modern object-oriented machine learning framework in R
M Lang, M Binder, J Richter, P Schratz, F Pfisterer, S Coors, Q Au, ...
Journal of Open Source Software 4 (44), 1903, 2019
322019
Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data
P Schratz, J Muenchow, E Iturritxa, J Richter, A Brenning
arXiv preprint arXiv:1803.11266, 2018
182018
Faster model-based optimization through resource-aware scheduling strategies
J Richter, H Kotthaus, B Bischl, P Marwedel, J Rahnenführer, M Lang
International Conference on Learning and Intelligent Optimization, 267-273, 2016
132016
BBmisc: Miscellaneous Helper Functions for B
B Bischl, M Lang, J Bossek, D Horn, J Richter, D Surmann
Bischl. R package version 1, 2017
92017
Rambo: Resource-aware model-based optimization with scheduling for heterogeneous runtimes and a comparison with asynchronous model-based optimization
H Kotthaus, J Richter, A Lang, J Thomas, B Bischl, P Marwedel, ...
International Conference on Learning and Intelligent Optimization, 180-195, 2017
82017
mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions, 2017
B Bischl, J Richter, J Bossek, D Horn, J Thomas, M Lang
URL http://arxiv. org/abs/1703 3373, 3, 2016
82016
mlr3: A modern object-oriented machine learning framework in RJ Open Source Softw
M Lang, M Binder, J Richter, P Schratz, F Pfisterer, S Coors, Q Au, ...
72019
Model-based optimization of subgroup weights for survival analysis
J Richter, K Madjar, J Rahnenführer
Bioinformatics 35 (14), i484-i491, 2019
62019
ParamHelpers: Helpers for parameters in black-box optimization, tuning, and machine learning
B Bischl, M Lang, J Bossek, D Horn, K Schork, J Richter, P Kerschke
R package version 1, 23, 2016
62016
mlr Tutorial
J Schiffner, B Bischl, M Lang, J Richter, ZM Jones, P Probst, F Pfisterer, ...
arXiv preprint arXiv:1609.06146, 2016
32016
mlr3 book
M Becker, M Binder, B Bischl, M Lang, F Pfisterer, NG Reich, J Richter, ...
URl: https://mlr3book. mlr-org. com, 2021
12021
Machine Learning in R
M Lang, J Richter
12019
mlrHyperopt: Effortless and collaborative hyperparameter optimization experiments
J Richter, J Rahnenführer, M Lang
The R user conference, useR! 2017 July 4-7 2017, 78-, 2017
12017
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B Bischl, M Binder, M Lang, T Pielok, J Richter, S Coors, J Thomas, ...
arXiv preprint arXiv:2107.05847, 2021
2021
MODES: model-based optimization on distributed embedded systems
J Shi, J Bian, J Richter, KH Chen, J Rahnenführer, H Xiong, JJ Chen
Machine Learning, 1-21, 2021
2021
Improving Adaptive Seamless Designs through Bayesian optimization
J Richter, T Friede, J Rahnenführer
arXiv preprint arXiv:2105.09223, 2021
2021
Model-based optimization with concept drifts
J Richter, J Shi, JJ Chen, J Rahnenführer, M Lang
Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 877-885, 2020
2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20