Christian Bauckhage
Christian Bauckhage
Prof. of Computer Science, University of Bonn, Fraunhofer IAIS
Dirección de correo verificada de - Página principal
Citado por
Citado por
Evaluation of interest point detectors
C Schmid, R Mohr, C Bauckhage
International Journal of computer vision 37 (2), 151-172, 2000
Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems
L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ...
IEEE Transactions on Knowledge and Data Engineering 35 (1), 614-633, 2021
The slashdot zoo: mining a social network with negative edges
J Kunegis, A Lommatzsch, C Bauckhage
Proceedings of the 18th international conference on World wide web, 741-750, 2009
Comparing and evaluating interest points
C Schmid, R Mohr, C Bauckhage
Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271 …, 1998
Informed Haar-like Features Improve Pedestrian Detection
S Zhang, C Bauckhage, A Cremers
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014
Insights into Internet Memes
C Bauckhage
Weblogs and Social Media 2011. ICWSM 2011. Fifth International AAAI …, 2011
Propagation kernels: efficient graph kernels from propagated information
M Neumann, R Garnett, C Bauckhage, K Kersting
Machine learning 102, 209-245, 2016
Analyzing social bookmarking systems: A del. icio. us cookbook
R Wetzker, C Zimmermann, C Bauckhage
Proceedings of the ECAI 2008 Mining Social Data Workshop, 26-30, 2008
Guns, swords and data: Clustering of player behavior in computer games in the wild
A Drachen, R Sifa, C Bauckhage, C Thurau
IEEE Conference on Computational Intelligence and Games, 163-170, 2012
Predicting Player Churn in the Wild
F Hadiji, R Sifa, A Drachen, C Thurau, K Kersting, C Bauckhage
IEEE Conference on Computational Intelligence and Games, 2014
Loveparade 2010: Automatic Video Analysis of a Crowd Disaster
B Krausz, C Bauckhage
Computer Vision and Image Understanding 116 (3), 307-319, 2012
Combining machine learning and simulation to a hybrid modelling approach: Current and future directions
L von Rueden, S Mayer, R Sifa, C Bauckhage, J Garcke
Advances in Intelligent Data Analysis XVIII: 18th International Symposium on …, 2020
Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis
C Römer, M Wahabzada, A Ballvora, F Pinto, M Rossini, C Panigada, ...
Functional Plant Biology 39 (11), 878-890, 2012
Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants
M Wahabzada, AK Mahlein, C Bauckhage, U Steiner, EC Oerke, ...
Scientific reports 6 (1), 22482, 2016
I tag, you tag: translating tags for advanced user models
R Wetzker, C Zimmermann, C Bauckhage, S Albayrak
Proceedings of the third ACM international conference on Web search and data …, 2010
Clustering Game Behavior Data
C Bauckhage, A Drachen, R Sifa
Computational Intelligence and AI in Games, IEEE Transactions on 7 (3), 266-278, 2015
Predicting purchase decisions in mobile free-to-play games
R Sifa, F Hadiji, J Runge, A Drachen, K Kersting, C Bauckhage
proceedings of the AAAI conference on artificial intelligence and …, 2015
Metro maps of plant disease dynamics—automated mining of differences using hyperspectral images
M Wahabzada, AK Mahlein, C Bauckhage, U Steiner, EC Oerke, ...
Plos one 10 (1), e0116902, 2015
Learning human-like movement behavior for computer games
C Thurau, C Bauckage, G Sagerer
How Players Lose Interest in Playing a Game: An Empirical Study Based on Distributions of Total Playing Times
C Bauckhage, K Kersting, R Sifa, C Thurau, A Drachen, A Canossa
IEEE Conference on Computational Intelligence and Games, 2012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20