Zheng-Hua Tan
Zheng-Hua Tan
Professor of Machine Learning and Speech Processing, Department of Electronic Systems
Dirección de correo verificada de es.aau.dk - Página principal
Título
Citado por
Citado por
Año
Permutation invariant training of deep models for speaker-independent multi-talker speech separation
D Yu, M Kolbæk, ZH Tan, J Jensen
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
3882017
Multitalker speech separation with utterance-level permutation invariant training of deep recurrent neural networks
M Kolbæk, D Yu, ZH Tan, J Jensen
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (10 …, 2017
3682017
Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification
D Michelsanti, ZH Tan
arXiv preprint arXiv:1709.01703, 2017
1582017
Speech intelligibility potential of general and specialized deep neural network based speech enhancement systems
M Kolbæk, ZH Tan, J Jensen
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (1), 153-167, 2016
1212016
Decorrelation of neutral vector variables: Theory and applications
Z Ma, JH Xue, A Leijon, ZH Tan, Z Yang, J Guo
IEEE transactions on neural networks and learning systems 29 (1), 129-143, 2016
1122016
Low-complexity variable frame rate analysis for speech recognition and voice activity detection
ZH Tan, B Lindberg
IEEE Journal of Selected Topics in Signal Processing 4 (5), 798-807, 2010
1032010
Reddots replayed: A new replay spoofing attack corpus for text-dependent speaker verification research
T Kinnunen, M Sahidullah, M Falcone, L Costantini, RG Hautamäki, ...
2017 IEEE International conference on acoustics, speech and signal …, 2017
992017
Automatic speech recognition on mobile devices and over communication networks
ZH Tan, B Lindberg
Springer Science & Business Media, 2008
952008
Automatic speech recognition over error-prone wireless networks
ZH Tan, P Dalsgaard, B Lindberg
Speech Communication 47 (1-2), 220-242, 2005
602005
Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features
H Yu, ZH Tan, Z Ma, R Martin, J Guo
IEEE transactions on neural networks and learning systems 29 (10), 4633-4644, 2017
472017
Robust speech recognition based on noise and snr classification-a multiple-model framework
H Xu, ZH Tan, P Dalsgaard, B Lindberg
Ninth European Conference on Speech Communication and Technology, 2005
452005
DNN filter bank cepstral coefficients for spoofing detection
H Yu, ZH Tan, Y Zhang, Z Ma, J Guo
Ieee Access 5, 4779-4787, 2017
432017
Internet of Things: Opportunities and Challenges
ZH Tan, NR Prasad
Tutorial at WPMC2010, Recife, Brazil, 2010
43*2010
Speech enhancement using long short-term memory based recurrent neural networks for noise robust speaker verification
M Kolbœk, ZH Tan, J Jensen
2016 IEEE spoken language technology workshop (SLT), 305-311, 2016
412016
Developing a speaker identification system for the DARPA RATS project
O Plchot, S Matsoukas, P Matějka, N Dehak, J Ma, S Cumani, O Glembek, ...
2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013
412013
A joint approach for single-channel speaker identification and speech separation
P Mowlaee, R Saeidi, MG Christensen, ZH Tan, T Kinnunen, P Franti, ...
IEEE Transactions on Audio, Speech, and Language Processing 20 (9), 2586-2601, 2012
412012
Monaural speech enhancement using deep neural networks by maximizing a short-time objective intelligibility measure
M Kolbæk, ZH Tan, J Jensen
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
392018
Feature selection for neutral vector in EEG signal classification
Z Ma, ZH Tan, J Guo
Neurocomputing 174, 937-945, 2016
372016
Adaptive overcurrent protection for microgrids in extensive distribution systems
H Lin, JM Guerrero, C Jia, ZH Tan, JC Vasquez, C Liu
Industrial Electronics Society, IECON 2016-42nd Annual Conference of the …, 2016
362016
Adaptive protection combined with machine learning for microgrids
H Lin, K Sun, ZH Tan, C Liu, JM Guerrero, JC Vasquez
IET Generation, Transmission & Distribution 13 (6), 770-779, 2019
352019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20