Deep variational information bottleneck AA Alemi, I Fischer, JV Dillon, K Murphy arXiv preprint arXiv:1612.00410, 2016 | 942 | 2016 |
Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, J Dillon, ... Advances in neural information processing systems 32, 2019 | 773 | 2019 |
Fixing a broken ELBO A Alemi, B Poole, I Fischer, J Dillon, RA Saurous, K Murphy International Conference on Machine Learning, 159-168, 2018 | 423* | 2018 |
Likelihood ratios for out-of-distribution detection J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, M Depristo, J Dillon, ... Advances in neural information processing systems 32, 2019 | 325 | 2019 |
Tensorflow distributions JV Dillon, I Langmore, D Tran, E Brevdo, S Vasudevan, D Moore, B Patton, ... arXiv preprint arXiv:1711.10604, 2017 | 313 | 2017 |
The Locally Weighted Bag of Words Framework for Document Representation. G Lebanon, Y Mao, J Dillon Journal of Machine Learning Research 8 (10), 2007 | 90 | 2007 |
Uncertainty in the variational information bottleneck AA Alemi, I Fischer, JV Dillon arXiv preprint arXiv:1807.00906, 2018 | 64 | 2018 |
Neutra-lizing bad geometry in hamiltonian monte carlo using neural transport M Hoffman, P Sountsov, JV Dillon, I Langmore, D Tran, S Vasudevan arXiv preprint arXiv:1903.03704, 2019 | 63 | 2019 |
Sequential document visualization Y Mao, J Dillon, G Lebanon IEEE transactions on visualization and computer graphics 13 (6), 1208-1215, 2007 | 48 | 2007 |
Density of states estimation for out of distribution detection W Morningstar, C Ham, A Gallagher, B Lakshminarayanan, A Alemi, ... International Conference on Artificial Intelligence and Statistics, 3232-3240, 2021 | 39 | 2021 |
Can you trust your model’s uncertainty Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ... evaluating predictive uncertainty under dataset shift, 2019 | 32 | 2019 |
Stochastic composite likelihood JV Dillon, G Lebanon The Journal of Machine Learning Research 11, 2597-2633, 2010 | 32 | 2010 |
A unified optimization framework for robust pseudo-relevance feedback algorithms JV Dillon, K Collins-Thompson Proceedings of the 19th ACM international conference on Information and …, 2010 | 27 | 2010 |
Statistical translation, heat kernels and expected distances J Dillon, Y Mao, G Lebanon, J Zhang arXiv preprint arXiv:1206.5248, 2012 | 26 | 2012 |
Hydra: Preserving ensemble diversity for model distillation L Tran, BS Veeling, K Roth, J Swiatkowski, JV Dillon, J Snoek, S Mandt, ... arXiv preprint arXiv:2001.04694, 2020 | 24 | 2020 |
The k-tied normal distribution: A compact parameterization of Gaussian mean field posteriors in Bayesian neural networks J Swiatkowski, K Roth, B Veeling, L Tran, J Dillon, J Snoek, S Mandt, ... International Conference on Machine Learning, 9289-9299, 2020 | 23 | 2020 |
Deep variational information bottleneck. arXiv 2016 AA Alemi, I Fischer, JV Dillon, K Murphy arXiv preprint arXiv:1612.00410, 0 | 22 | |
tfp. mcmc: Modern Markov chain Monte Carlo tools built for modern hardware J Lao, C Suter, I Langmore, C Chimisov, A Saxena, P Sountsov, D Moore, ... arXiv preprint arXiv:2002.01184, 2020 | 20 | 2020 |
Asymptotic analysis of generative semi-supervised learning JV Dillon, K Balasubramanian, G Lebanon arXiv preprint arXiv:1003.0024, 2010 | 17 | 2010 |
Statistical and computational tradeoffs in stochastic composite likelihood J Dillon, G Lebanon Artificial Intelligence and Statistics, 129-136, 2009 | 17 | 2009 |