Juergen Schmidhuber
Juergen Schmidhuber
The Swiss AI Lab, IDSIA, University of Lugano
Dirección de correo verificada de idsia.ch - Página principal
Título
Citado por
Citado por
Año
Long short-term memory
S Hochreiter, J Schmidhuber
Neural computation 9 (8), 1735-1780, 1997
515141997
Deep learning in neural networks: An overview
J Schmidhuber
Neural networks 61, 85-117, 2015
131662015
Multi-column deep neural network for traffic sign classification
D CireşAn, U Meier, J Masci, J Schmidhuber
Neural networks 32, 333-338, 2012
4872*2012
Multi-column deep neural networks for image classification
D Ciregan, U Meier, J Schmidhuber
2012 IEEE conference on computer vision and pattern recognition, 3642-3649, 2012
48132012
Learning to forget: Continual prediction with LSTM
FA Gers, J Schmidhuber, F Cummins
Neural computation 12 (10), 2451-2471, 2000
44892000
LSTM: A search space odyssey
K Greff, RK Srivastava, J Koutník, BR Steunebrink, J Schmidhuber
IEEE transactions on neural networks and learning systems 28 (10), 2222-2232, 2016
35492016
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
A Graves, J Schmidhuber
Neural networks 18 (5-6), 602-610, 2005
33592005
Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks
A Graves, S Fernández, F Gomez, J Schmidhuber
Proceedings of the 23rd international conference on Machine learning, 369-376, 2006
32672006
A novel connectionist system for unconstrained handwriting recognition
A Graves, M Liwicki, S Fernández, R Bertolami, H Bunke, J Schmidhuber
IEEE transactions on pattern analysis and machine intelligence 31 (5), 855-868, 2008
19042008
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
S Hochreiter, Y Bengio, P Frasconi, J Schmidhuber
A field guide to dynamical recurrent neural networks. IEEE Press, 2001
17022001
Highway networks
RK Srivastava, K Greff, J Schmidhuber
arXiv preprint arXiv:1505.00387, 2015
16492015
Stacked convolutional auto-encoders for hierarchical feature extraction
J Masci, U Meier, D Cireşan, J Schmidhuber
International conference on artificial neural networks, 52-59, 2011
15822011
Flexible, high performance convolutional neural networks for image classification
DC Ciresan, U Meier, J Masci, LM Gambardella, J Schmidhuber
Twenty-second international joint conference on artificial intelligence, 2011
14942011
Deep neural networks segment neuronal membranes in electron microscopy images
D Ciresan, A Giusti, L Gambardella, J Schmidhuber
Advances in neural information processing systems 25, 2843-2851, 2012
14742012
Training very deep networks
RK Srivastava, K Greff, J Schmidhuber
arXiv preprint arXiv:1507.06228, 2015
14422015
Learning precise timing with LSTM recurrent networks
FA Gers, NN Schraudolph, J Schmidhuber
Journal of machine learning research 3 (Aug), 115-143, 2002
14292002
Mitosis detection in breast cancer histology images with deep neural networks
DC Cireşan, A Giusti, LM Gambardella, J Schmidhuber
International conference on medical image computing and computer-assisted …, 2013
13702013
Deep, big, simple neural nets for handwritten digit recognition
DC Cireşan, U Meier, LM Gambardella, J Schmidhuber
Neural computation 22 (12), 3207-3220, 2010
12032010
Offline handwriting recognition with multidimensional recurrent neural networks
A Graves, J Schmidhuber
Advances in neural information processing systems 21, 545-552, 2008
11172008
Modeling attacks on physical unclonable functions
U Rührmair, F Sehnke, J Sölter, G Dror, S Devadas, J Schmidhuber
Proceedings of the 17th ACM conference on Computer and communications …, 2010
8272010
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20