Seguir
George E. Dahl
Título
Citado por
Citado por
Año
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
G Hinton, L Deng, D Yu, GE Dahl, A Mohamed, N Jaitly, A Senior, ...
IEEE Signal processing magazine 29 (6), 82-97, 2012
118382012
On the importance of initialization and momentum in deep learning
I Sutskever, J Martens, G Dahl, G Hinton
International conference on machine learning, 1139-1147, 2013
49352013
Neural message passing for quantum chemistry
J Gilmer, SS Schoenholz, PF Riley, O Vinyals, GE Dahl
International conference on machine learning, 1263-1272, 2017
45892017
Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition
G Dahl, D Yu, L Deng, A Acero
Audio, Speech, and Language Processing, IEEE Transactions on, 1-1, 2010
35352010
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
23162018
Acoustic modeling using deep belief networks
A Mohamed, GE Dahl, G Hinton
IEEE transactions on audio, speech, and language processing 20 (1), 14-22, 2011
20582011
Deep convolutional neural networks for large-scale speech tasks
TN Sainath, B Kingsbury, G Saon, H Soltau, A Mohamed, G Dahl, ...
Neural networks 64, 39-48, 2015
18072015
Improving deep neural networks for LVCSR using rectified linear units and dropout
GE Dahl, TN Sainath, GE Hinton
2013 IEEE international conference on acoustics, speech and signal …, 2013
16622013
Deep neural nets as a method for quantitative structure–activity relationships
J Ma, RP Sheridan, A Liaw, GE Dahl, V Svetnik
Journal of chemical information and modeling 55 (2), 263-274, 2015
9802015
Detecting cancer metastases on gigapixel pathology images
Y Liu, K Gadepalli, M Norouzi, GE Dahl, T Kohlberger, A Boyko, ...
arXiv preprint arXiv:1703.02442, 2017
6242017
Deep belief networks for phone recognition
A Mohamed, G Dahl, G Hinton
NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, 2009
5932009
Large-scale malware classification using random projections and neural networks
GE Dahl, JW Stokes, L Deng, D Yu
2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013
5282013
Prediction errors of molecular machine learning models lower than hybrid DFT error
FA Faber, L Hutchison, B Huang, J Gilmer, SS Schoenholz, GE Dahl, ...
Journal of chemical theory and computation 13 (11), 5255-5264, 2017
4772017
Phone recognition with the mean-covariance restricted Boltzmann machine
G Dahl, MA Ranzato, A Mohamed, GE Hinton
Advances in neural information processing systems 23, 2010
4222010
Deep belief networks using discriminative features for phone recognition
A Mohamed, TN Sainath, G Dahl, B Ramabhadran, GE Hinton, ...
2011 IEEE international conference on acoustics, speech and signal …, 2011
3942011
Multi-task neural networks for QSAR predictions
GE Dahl, N Jaitly, R Salakhutdinov
arXiv preprint arXiv:1406.1231, 2014
3362014
Large scale distributed neural network training through online distillation
R Anil, G Pereyra, A Passos, R Ormandi, GE Dahl, GE Hinton
arXiv preprint arXiv:1804.03235, 2018
3342018
Measuring the effects of data parallelism on neural network training
CJ Shallue, J Lee, J Antognini, J Sohl-Dickstein, R Frostig, GE Dahl
arXiv preprint arXiv:1811.03600, 2018
2812018
Improvements to deep convolutional neural networks for LVCSR
TN Sainath, B Kingsbury, A Mohamed, GE Dahl, G Saon, H Soltau, ...
2013 IEEE workshop on automatic speech recognition and understanding, 315-320, 2013
2612013
Artificial intelligence–based breast cancer nodal metastasis detection: Insights into the black box for pathologists
Y Liu, T Kohlberger, M Norouzi, GE Dahl, JL Smith, A Mohtashamian, ...
Archives of pathology & laboratory medicine 143 (7), 859-868, 2019
2472019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20