A concave—convex elliptic problem involving the fractional Laplacian C Brändle, E Colorado, A de Pablo, U Sánchez Proceedings of the Royal Society of Edinburgh Section A: Mathematics 143 (1 …, 2013 | 568 | 2013 |

A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation AH Fan, J Schmeling, S Troubetzkoy Proceedings of the London Mathematical Society 107 (5), 1173-1219, 2013 | 56 | 2013 |

Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary C Brandle, F Quirós, JD Rossi Communications on Pure and Applied Analysis 4 (3), 523, 2005 | 45 | 2005 |

The role of non-linear diffusion in non-simultaneous blow-up C Brändle, F Quirós, JD Rossi Journal of mathematical analysis and applications 308 (1), 92-104, 2005 | 39 | 2005 |

Phase transitions with midrange interactions: a nonlocal Stefan model C Brändle, E Chasseigne, F Quirós SIAM Journal on Mathematical Analysis 44 (4), 3071-3100, 2012 | 26 | 2012 |

Viscosity solutions for quasilinear degenerate parabolic equations of porous medium type C Brandle, JL Vazquez Indiana University mathematics journal 54 (3), 817-860, 2005 | 26 | 2005 |

Unbounded solutions of the nonlocal heat equation C Brändle, E Chasseigne, R Ferreira arXiv preprint arXiv:1001.2541, 2010 | 25 | 2010 |

Fully discrete adaptive methods for a blow-up problem C Brandle, P Groisman, JD Rossi Mathematical Models and Methods in Applied Sciences 14 (10), 1425-1450, 2004 | 22 | 2004 |

An adaptive numerical method to handle blow-up in a parabolic system C Brändle, F Quirós, J D. Rossi Numerische Mathematik 102, 39-59, 2005 | 19 | 2005 |

NONLOCAL HEAT EQUATIONS: REGULARIZING EFFECT, DECAY ESTIMATES AND NASH INEQUALITIES. C Brändle, AD Pablo Communications on Pure & Applied Analysis 17 (3), 2018 | 18* | 2018 |

Asymptotic behaviour of the porous media equation in domains with holes C Brandle, F Quirós, JL Vázquez Interfaces and Free Boundaries 9 (2), 211, 2007 | 16 | 2007 |

A complete classification of simultaneous blow-up rates C Brändle, F Quirós, JD Rossi Applied mathematics letters 19 (7), 599-603, 2006 | 14 | 2006 |

More network science for teenagers A Sánchez, C Brändle arXiv preprint arXiv:1403.3618, 2014 | 12 | 2014 |

Large deviations estimates for some non-local equations: Fast decaying kernels and explicit bounds C Brändle, E Chasseigne Nonlinear Analysis: Theory, Methods & Applications 71 (11), 5572-5586, 2009 | 8 | 2009 |

Large deviation estimates for some nonlocal equations. General bounds and applications C Brändle, E Chasseigne Transactions of the American Mathematical Society 365 (7), 3437-3476, 2013 | 4 | 2013 |

Complete blow-up and avalanche formation for a parabolic system with non-simultaneous blow-up C Brändle, F Quirós, JD Rossi Advanced Nonlinear Studies 10 (3), 659-679, 2010 | 4 | 2010 |

A stationary population model with an interior interface-type boundary P Álvarez-Caudevilla, C Brändle Nonlinear Analysis: Real World Applications 73, 103918, 2023 | 2 | 2023 |

On unbounded solutions of ergodic problems for non-local Hamilton–Jacobi equations C Brändle, E Chasseigne Nonlinear Analysis 180, 94-128, 2019 | 2 | 2019 |

A three population Lotka-Volterra competition model with two populations interacting through an interface P Álvarez-Caudevilla, C Brändle, M Molina-Becerra, A Suárez arXiv preprint arXiv:2408.03264, 2024 | | 2024 |

Interface logistic problems: large diffusion and singular perturbation results P Álvarez-Caudevilla, C Brändle, M Molina-Becerra, A Suárez arXiv preprint arXiv:2402.08984, 2024 | | 2024 |