Gavin D Portwood
Gavin D Portwood
Dirección de correo verificada de llnl.gov
Título
Citado por
Citado por
Año
Robust identification of dynamically distinct regions in stratified turbulence
GD Portwood, SM de Bruyn Kops, JR Taylor, H Salehipour, CP Caulfield
Journal of Fluid Mechanics 807, 2016
312016
Asymptotic dynamics of high dynamic range stratified turbulence
GD Portwood, SM de Bruyn Kops, CP Caulfield
Physical review letters 122 (19), 194504, 2019
252019
Turbulence forecasting via Neural ODE
GD Portwood, PP Mitra, MD Ribeiro, TM Nguyen, BT Nadiga, JA Saenz, ...
arXiv preprint arXiv:1911.05180, 2019
182019
Interpreting neural network models of residual scalar flux
GD Portwood, BT Nadiga, JA Saenz, D Livescu
Journal of Fluid Mechanics 907, 2021
72021
A data-driven approach to modeling turbulent decay at non-asymptotic reynolds numbers
MD Ribeiro, GD Portwood, P Mitra, TM Nyugen, BT Nadiga, M Chertkov, ...
Bulletin of the American Physical Society, 2019
32019
Accelerating training in artificial neural networks with dynamic mode decomposition
ME Tano, GD Portwood, JC Ragusa
arXiv preprint arXiv:2006.14371, 2020
22020
Physics-informed deep neural networks applied to scalar subgrid flux modeling in a mixed DNS/LES framework
G Portwood, M Chertkov, B Nadiga, J Saenz, D Livescu
APS Division of Fluid Dynamics Meeting Abstracts, A19. 001, 2019
22019
Rapid Spatiotemporal Turbulence Modeling with Convolutional Neural ODEs
V Shankar, G Portwood, A Mohan, P Mitra, V Viswanathan, D Schmidt
Bulletin of the American Physical Society, 2020
12020
Analysis and interpretation of out-performing neural network residual flux models
GD Portwood, BT Nadiga, JA Saenz, D Livescu
arXiv preprint arXiv:2004.07207, 2020
12020
Autonomous RANS/LES hybrid models with data-driven subclosures
G Portwood, J Saenz, D Livescu
APS Division of Fluid Dynamics Meeting Abstracts, NP05. 164, 2019
12019
A Study on Homogeneous Sheared Stably Stratified Turbulence
G Portwood
12019
Toward direct numerical simulations of the stratified turbulence inertial range
S de Bruyn Kops, JJ Riley, GD Portwood
International Symposium on Stratified Flows 1 (1), 2016
12016
Learning non-linear spatio-temporal dynamics with convolutional Neural ODEs
V Shankar, GD Portwood, AT Mohan, PP Mitra, C Rackauckas, LA Wilson, ...
1
Multigrid Solver With Super-Resolved Interpolation
F Holguin, GS Sidharth, G Portwood
arXiv preprint arXiv:2105.01739, 2021
2021
Kinetic and potential energy cascade mechanisms in sheared, stably stratified turbulence
L Zhang, G Portwood, R Dhariwal, A Bragg
Bulletin of the American Physical Society, 2020
2020
Idealised Turbulent Wake With Steady, Non-Uniform Ambient Density Stratification
GD Portwood, SM Kops
arXiv preprint arXiv:2011.04541, 2020
2020
Implications of inertial subrange scaling on stably stratified mixing
GD Portwood, SM Kops, CP Caulfield
arXiv preprint arXiv:2011.02681, 2020
2020
Unsupervised Machine Learning to Teach Fluid Dynamicists to Think in 15 Dimensions
SM Kops, DJ Saunders, EA Rietman, GD Portwood
arXiv preprint arXiv:1907.10035, 2019
2019
Unsupervised Machine Learning to Teach Fluid Dynamicists to Think in 15 Dimensions
SM de Bruyn Kops, DJ Saunders, EA Rietman, GD Portwood
arXiv e-prints, arXiv: 1907.10035, 2019
2019
Volume Scaling of Intense Mixing Regions in Homogeneous Stratified Turbulence
G Portwood, S de Bruyn Kops
APS Division of Fluid Dynamics Meeting Abstracts, M29. 003, 2017
2017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20