Veronica Vilaplana
Citado por
Citado por
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ...
arXiv preprint arXiv:1811.02629, 2018
Bcn20000: Dermoscopic lesions in the wild
M Combalia, NCF Codella, V Rotemberg, B Helba, V Vilaplana, O Reiter, ...
arXiv preprint arXiv:1908.02288, 2019
Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge
HJ Kuijf, JM Biesbroek, J De Bresser, R Heinen, S Andermatt, M Bento, ...
IEEE transactions on medical imaging 38 (11), 2556-2568, 2019
Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge
L Wang, D Nie, G Li, É Puybareau, J Dolz, Q Zhang, F Wang, J Xia, Z Wu, ...
IEEE transactions on medical imaging 38 (9), 2219-2230, 2019
Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities
J Gené-Mola, V Vilaplana, JR Rosell-Polo, JR Morros, J Ruiz-Hidalgo, ...
Computers and Electronics in Agriculture 162, 689-698, 2019
Binary partition trees for object detection
V Vilaplana, F Marques, P Salembier
IEEE Transactions on Image Processing 17 (11), 2201-2216, 2008
Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry
J Gené-Mola, R Sanz-Cortiella, JR Rosell-Polo, JR Morros, ...
Computers and Electronics in Agriculture 169, 105165, 2020
Brain MRI super-resolution using 3D generative adversarial networks
I Sánchez, V Vilaplana
First International Conference on Medical Imaging with Deep Learning, MIDL 2018, 2018
Fruit detection in an apple orchard using a mobile terrestrial laser scanner
J Gené-Mola, E Gregorio, J Guevara, F Auat, R Sanz-Cortiella, A Escolà, ...
Biosystems engineering 187, 171-184, 2019
Super-resolution of sentinel-2 imagery using generative adversarial networks
L Salgueiro Romero, J Marcello, V Vilaplana
Remote Sensing 12 (15), 2424, 2020
Uncertainty estimation in deep neural networks for dermoscopic image classification
M Combalia, F Hueto, S Puig, J Malvehy, V Vilaplana
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation
A Casamitjana, M Catà, I Sánchez, M Combalia, V Vilaplana
International MICCAI Brainlesion Workshop, 381-391, 2017
3D Convolutional Neural Networks for Brain Tumor Segmentation: a comparison of multi-resolution architectures
A Casamitjana, S Puch, A Aduriz, V Vilaplana
International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke …, 2016
Las mancomunidades en España
PR Figueras, C Haas, CA Capdevila
Boletín de la Asociación de Geógrafos Españoles, 2005
3d convolutional networks for brain tumor segmentation
A Casamitjana, S Puch, A Aduriz, E Sayrol, V Vilaplana
Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image …, 2016
Leishmaniasis parasite segmentation and classification using deep learning
M Górriz, A Aparicio, B Raventós, V Vilaplana, E Sayrol, D López-Codina
Articulated Motion and Deformable Objects: 10th International Conference …, 2018
MRI Brain Tumor Segmentation and Uncertainty Estimation Using 3D-UNet Architectures
L Mora, V Vilaplana
BrainLes2020. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic …, 2021
BCN20000: Dermoscopic lesions in the wild. arXiv 2019
M Combalia, NC Codella, V Rotemberg, B Helba, V Vilaplana, O Reiter, ...
arXiv preprint arXiv:1908.02288, 1908
QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation-analysis of ranking scores and benchmarking results
R Mehta, A Filos, U Baid, C Sako, R McKinley, M Rebsamen, K Dätwyler, ...
The journal of machine learning for biomedical imaging 2022, 2022
Face segmentation and tracking based on connected operators and partition projection
F Marqués, V Vilaplana
Pattern Recognition 35 (3), 601-614, 2002
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20