Yoshua Bengio
Yoshua Bengio
Professor, University of Montreal (Computer Sc. & Op. Res.), Mila, CIFAR, CRM, IVADO, REPARTI, GRSNC
Dirección de correo verificada de mila.quebec - Página principal
TítuloCitado porAño
Gradient-based learning applied to document recognition
Y LeCun, L Bottou, Y Bengio, P Haffner
Proceedings of the IEEE 86 (11), 2278-2324, 1998
230511998
Deep learning
Y LeCun, Y Bengio, G Hinton
nature 521 (7553), 436-444, 2015
212302015
Generative adversarial nets
I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...
Advances in neural information processing systems, 2672-2680, 2014
141572014
Deep learning
I Goodfellow, Y Bengio, A Courville
MIT press, 2016
119282016
Neural machine translation by jointly learning to align and translate
D Bahdanau, K Cho, Y Bengio
arXiv preprint arXiv:1409.0473, 2014
97942014
Learning deep architectures for AI
Y Bengio
Foundations and trends® in Machine Learning 2 (1), 1-127, 2009
75312009
Learning phrase representations using RNN encoder-decoder for statistical machine translation
K Cho, B Van Merriënboer, C Gulcehre, D Bahdanau, F Bougares, ...
arXiv preprint arXiv:1406.1078, 2014
73252014
Understanding the difficulty of training deep feedforward neural networks
X Glorot, Y Bengio
Proceedings of the thirteenth international conference on artificial …, 2010
72502010
Representation learning: A review and new perspectives
Y Bengio, A Courville, P Vincent
IEEE transactions on pattern analysis and machine intelligence 35 (8), 1798-1828, 2013
58432013
A Neural probabilistic language model
Y Bengio, R Ducharme, P Vincent
Journal of Machine Learning Research 3, 1137-1155, 2003
55152003
Learning long-term dependencies with gradient descent is difficult
Y Bengio, P Simard, P Frasconi
IEEE transactions on neural networks 5 (2), 157-166, 1994
43741994
Greedy layer-wise training of deep networks
Y Bengio, P Lamblin, D Popovici, H Larochelle
Advances in neural information processing systems, 153-160, 2007
42392007
Show, attend and tell: Neural image caption generation with visual attention
K Xu, J Ba, R Kiros, K Cho, A Courville, R Salakhudinov, R Zemel, ...
International conference on machine learning, 2048-2057, 2015
41652015
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
P Vincent, H Larochelle, I Lajoie, Y Bengio, PA Manzagol
Journal of machine learning research 11 (Dec), 3371-3408, 2010
41342010
Deep sparse rectifier neural networks
X Glorot, A Bordes, Y Bengio
Proceedings of the fourteenth international conference on artificial …, 2011
40102011
Extracting and composing robust features with denoising autoencoders
P Vincent, H Larochelle, Y Bengio, PA Manzagol
Proceedings of the 25th international conference on Machine learning, 1096-1103, 2008
38492008
Empirical evaluation of gated recurrent neural networks on sequence modeling
J Chung, C Gulcehre, KH Cho, Y Bengio
arXiv preprint arXiv:1412.3555, 2014
37412014
How transferable are features in deep neural networks?
J Yosinski, J Clune, Y Bengio, H Lipson
Advances in neural information processing systems, 3320-3328, 2014
33542014
Random search for hyper-parameter optimization
J Bergstra, Y Bengio
Journal of Machine Learning Research 13 (Feb), 281-305, 2012
32282012
Convolutional networks for images, speech, and time series
Y LeCun, Y Bengio
The handbook of brain theory and neural networks 3361 (10), 1995, 1995
27311995
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20