Yoshua Bengio
Yoshua Bengio
Professor, University of Montreal (Computer Sc. & Op. Res.), Mila, CIFAR, CRM, IVADO, REPARTI, GRSNC
Dirección de correo verificada de mila.quebec - Página principal
Título
Citado por
Citado por
Año
Gradient-based learning applied to document recognition
Y LeCun, L Bottou, Y Bengio, P Haffner
Proceedings of the IEEE 86 (11), 2278-2324, 1998
281311998
Deep learning
Y LeCun, Y Bengio, G Hinton
nature 521 (7553), 436-444, 2015
277202015
Generative adversarial nets
I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...
Advances in neural information processing systems, 2672-2680, 2014
204772014
Deep learning
I Goodfellow, Y Bengio, A Courville
MIT press, 2016
171412016
Neural machine translation by jointly learning to align and translate
D Bahdanau, K Cho, Y Bengio
arXiv preprint arXiv:1409.0473, 2014
131492014
Learning phrase representations using RNN encoder-decoder for statistical machine translation
K Cho, B Van Merriënboer, C Gulcehre, D Bahdanau, F Bougares, ...
arXiv preprint arXiv:1406.1078, 2014
98432014
Understanding the difficulty of training deep feedforward neural networks
X Glorot, Y Bengio
Proceedings of the thirteenth international conference on artificial …, 2010
92902010
Learning deep architectures for AI
Y Bengio
Now Publishers Inc, 2009
83652009
Representation learning: A review and new perspectives
Y Bengio, A Courville, P Vincent
IEEE transactions on pattern analysis and machine intelligence 35 (8), 1798-1828, 2013
70162013
A Neural probabilistic language model
Y Bengio, R Ducharme, P Vincent
Journal of Machine Learning Research 3, 1137-1155, 2003
64492003
Show, attend and tell: Neural image caption generation with visual attention
K Xu, J Ba, R Kiros, K Cho, A Courville, R Salakhudinov, R Zemel, ...
International conference on machine learning, 2048-2057, 2015
53452015
Learning long-term dependencies with gradient descent is difficult
Y Bengio, P Simard, P Frasconi
IEEE transactions on neural networks 5 (2), 157-166, 1994
52961994
Deep sparse rectifier neural networks
X Glorot, A Bordes, Y Bengio
Proceedings of the fourteenth international conference on artificial …, 2011
51112011
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
P Vincent, H Larochelle, I Lajoie, Y Bengio, PA Manzagol, L Bottou
Journal of machine learning research 11 (12), 2010
49192010
Empirical evaluation of gated recurrent neural networks on sequence modeling
J Chung, C Gulcehre, KH Cho, Y Bengio
arXiv preprint arXiv:1412.3555, 2014
48072014
Greedy layer-wise training of deep networks
Y Bengio, P Lamblin, D Popovici, H Larochelle
Advances in neural information processing systems, 153-160, 2007
47492007
Extracting and composing robust features with denoising autoencoders
P Vincent, H Larochelle, Y Bengio, PA Manzagol
Proceedings of the 25th international conference on Machine learning, 1096-1103, 2008
45292008
How transferable are features in deep neural networks?
J Yosinski, J Clune, Y Bengio, H Lipson
Advances in neural information processing systems, 3320-3328, 2014
42922014
Random search for hyper-parameter optimization
J Bergstra, Y Bengio
The Journal of Machine Learning Research 13 (1), 281-305, 2012
41552012
Convolutional networks for images, speech, and time series
Y LeCun, Y Bengio
The handbook of brain theory and neural networks 3361 (10), 1995, 1995
33601995
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20