Seguir
Navin Raj Prabhu
Título
Citado por
Citado por
Año
End-to-end label uncertainty modeling for speech-based arousal recognition using bayesian neural networks
NR Prabhu, G Carbajal, N Lehmann-Willenbrock, T Gerkmann
Proc. Interspeech 2022, 151--155, 2021
122021
Defining and quantifying conversation quality in spontaneous interactions
N Raj Prabhu, C Raman, H Hung
Companion Publication of the 2020 International Conference on Multimodal …, 2020
122020
Label uncertainty modeling and prediction for speech emotion recognition using t-distributions
NR Prabhu, N Lehmann-Willenbrock, T Gerkmann
2022 10th International Conference on Affective Computing and Intelligent …, 2022
42022
Leveraging semantic information for efficient self-supervised emotion recognition with audio-textual distilled models
D de Oliveira, NR Prabhu, T Gerkmann
Proc. Interspeech 2023, 3632--3636, 2023
32023
Perceived conversation quality in spontaneous interactions
C Raman, NR Prabhu, H Hung
IEEE Transactions on Affective Computing, 2023
22023
EMOCONV-Diff: Diffusion-Based Speech Emotion Conversion for Non-Parallel and in-the-Wild Data
NR Prabhu, B Lay, S Welker, N Lehmann-Willenbrock, T Gerkmann
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024
12024
In-the-wild speech emotion conversion using disentangled self-supervised representations and neural vocoder-based resynthesis
NR Prabhu, N Lehmann-Willenbrock, T Gerkmann
Speech Communication; 15th ITG Conference, 176-180, 2023
12023
End-to-end label uncertainty modeling in speech emotion recognition using bayesian neural networks and label distribution learning
NR Prabhu, N Lehmann-Willenbrock, T Gerkmann
IEEE Transactions on Affective Computing, 2023
12023
Conversation Quality: Modeling in Free-Standing Conversational Groups
N Raj Prabhu
Delft University of Technology, 2020
2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–9