Design and integration of WAAM technology and in situ monitoring system in a gantry machine T Artaza, A Alberdi, M Murua, J Gorrotxategi, J Frías, G Puertas, ... Procedia Manufacturing 13, 778-785, 2017 | 61 | 2017 |
Wire arc additive manufacturing of Mn4Ni2CrMo steel: Comparison of mechanical and metallographic properties of PAW and GMAW T Artaza, A Suárez, M Murua, JC García, I Tabernero, A Lamikiz Procedia Manufacturing 41, 1071-1078, 2019 | 28 | 2019 |
Feature extraction-based prediction of tool wear of Inconel 718 in face turning M Murua, A Suárez, LN de Lacalle, R Santana, A Wretland Insight-Non-Destructive Testing and Condition Monitoring 60 (8), 443-450, 2018 | 19 | 2018 |
Data driven performance prediction in steel making F Boto, M Murua, T Gutierrez, S Casado, A Carrillo, A Arteaga Metals 12 (2), 172, 2022 | 15 | 2022 |
Tool-Path Problem in Direct Energy Deposition Metal-Additive Manufacturing: Sequence Strategy Generation M Murua, A Suárez, D Galar, R Santana IEEE Access 8 (1), 91574-91585, 2020 | 10 | 2020 |
A slag prediction model in an electric arc furnace process for special steel production M Murua, F Boto, E Anglada, JM Cabero, L Fernandez Procedia Manufacturing 54, 178-183, 2021 | 5 | 2021 |
Leveraging Constraint Programming in a Deep Learning Approach for Dynamically Solving the Flexible Job-Shop Scheduling Problem I Echeverria, M Murua, R Santana arXiv preprint arXiv:2403.09249, 2024 | 3 | 2024 |
Solving large flexible job shop scheduling instances by generating a diverse set of scheduling policies with deep reinforcement learning I Echeverria, M Murua, R Santana arXiv preprint arXiv:2310.15706, 2023 | 3 | 2023 |
Solving the multi-objective Hamiltonian cycle problem using a Branch-and-Fix based algorithm M Murua, D Galar, R Santana Journal of Computational Science 60, 101578, 2022 | 3 | 2022 |
Operations Research Proceedings 2019: Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 JS Neufeld, U Buscher, R Lasch, D Möst, J Schönberger Springer International Publishing, 2020 | 2 | 2020 |
Machine learning-based analysis engine to identify critical variables in multi-stage processes: application to the installation of blind fasteners M Murua, F Veiga, JA Ortega, M Penalva, A Diez-Olivan Dyna 95 (5), 534-540, 2020 | 1 | 2020 |
Adaptation of a branching algorithm to solve the multi-objective Hamiltonian cycle problem M Murua, D Galar, R Santana Operations Research Proceedings 2019: Selected Papers of the Annual …, 2020 | 1 | 2020 |
Diverse policy generation for the flexible job-shop scheduling problem via deep reinforcement learning with a novel graph representation I Echeverria, M Murua, R Santana Engineering Applications of Artificial Intelligence 139, 109488, 2025 | | 2025 |
Offline reinforcement learning for job-shop scheduling problems I Echeverria, M Murua, R Santana arXiv preprint arXiv:2410.15714, 2024 | | 2024 |
Genetic programming-based automated machine learning approach to solve regression problems M Murua Computers and Informatics 3 (1), 19-25, 2023 | | 2023 |
Advances in Branch-and-Fix methods to solve the Hamiltonian cycle problem in manufacturing optimization MM Etxeberría Universidad del País Vasco-Euskal Herriko Unibertsitatea, 2022 | | 2022 |
Motor de análisis basado en técnicas de aprendizaje automático para la identificación de variables críticas en procesos multietapa: Aplicación a la instalación de remaches ciegos M Murua, F Veiga, JA Ortega, M Penalva, A Diez-Olivan Congreso Máquina Herramienta (22CMH), 2019 | | 2019 |
Application of advanced regression methods for wear prediction of superalloys M Murua Etxeberria | | 2018 |
Tool routing problem based on the Hamiltonian cycle problem for wire arc additive manufacturing M Murua, R Santana, D Galar, A Suárez | | 2017 |