Seguir
Inés M. Galván
Inés M. Galván
Departamento de Informática, Universidad Carlos III de Madrid
Dirección de correo verificada de inf.uc3m.es
Título
Citado por
Citado por
Año
Redes de neuronas artificiales: Un enfoque práctico
P Isasi Vinuela, IM Galván León
Madrid: Pearson Prentice Hall,, 2004
504*2004
AMPSO: a new particle swarm method for nearest neighborhood classification
A Cervantes, IM Galván, P Isasi
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 …, 2009
1262009
Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks
IM Galván, JM Valls, A Cervantes, R Aler
Information Sciences 418, 363-382, 2017
1032017
The use of neural networks for fitting complex kinetic data
IM Galván, JM Zaldívar, H Hernandez, E Molga
Computers & Chemical Engineering 20 (12), 1451-1465, 1996
971996
Improving the separation of direct and diffuse solar radiation components using machine learning by gradient boosting
R Aler, IM Galván, JA Ruiz-Arias, CA Gueymard
Solar Energy 150, 558-569, 2017
912017
Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks
JM Zaldivar, E Gutiérrez, IM Galván, F Strozzi, A Tomasin
Journal of Hydroinformatics 2 (1), 61-84, 2000
822000
A short-term solar radiation forecasting system for the Iberian Peninsula. Part 2: Model blending approaches based on machine learning
J Huertas-Tato, R Aler, IM Galván, FJ Rodríguez-Benítez, ...
Solar Energy 195, 685-696, 2020
572020
A short-term solar radiation forecasting system for the Iberian Peninsula. Part 1: Models description and performance assessment
FJ Rodríguez-Benítez, C Arbizu-Barrena, J Huertas-Tato, R Aler-Mur, ...
Solar Energy 195, 396-412, 2020
522020
Multi-step learning rule for recurrent neural models: an application to time series forecasting
IM Galván, P Isasi
Neural processing letters 13, 115-133, 2001
482001
Machine learning techniques for daily solar energy prediction and interpolation using numerical weather models
R Martin, R Aler, JM Valls, IM Galván
Concurrency and Computation: Practice and Experience 28 (4), 1261-1274, 2016
442016
Automatic cloud type classification based on the combined use of a sky camera and a ceilometer.
DPV J. Huertas-Tato, F.J. Rodríguez-Benítez, C. Arbizu-Barrena, R. Aler-Mur ...
Journal of Geophysical Research: Atmospher 122 (20), 11045-11061, 2017
42*2017
A study of machine learning techniques for daily solar energy forecasting using numerical weather models
R Aler, R Martín, JM Valls, IM Galván
Intelligent distributed computing VIII, 269-278, 2015
422015
Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces
R Aler, IM Galván, JM Valls
Information Sciences 215, 53-66, 2012
382012
A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm
A Cervantes, I Galvan, P Isasi
2005 IEEE Congress on Evolutionary Computation 1, 290-297, 2005
362005
Direct estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networks
A Alcántara, IM Galván, R Aler
Engineering Applications of Artificial Intelligence 114, 105128, 2022
302022
Evolving spatial and frequency selection filters for brain-computer interfaces
R Aler, IM Galván, JM Valls
IEEE congress on evolutionary computation, 1-7, 2010
292010
Application of recurrent neural networks in batch reactors: Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature
IM Galván, JM Zaldıvar
Chemical Engineering and Processing: Process Intensification 37 (2), 149-161, 1998
281998
Binary particle swarm optimization in classification
A Cervantes, IM Galván, P Isasi
Institute of Computer Science, Academy of Sciences of the Czech Republic, 2005
272005
Michigan particle swarm optimization for prototype reduction in classification problems
A Cervantes, I Galván, P Isasi
New Generation Computing 27, 239-257, 2009
262009
Time-stamped resampling for robust evolutionary portfolio optimization
S García, D Quintana, IM Galván, P Isasi
Expert Systems with Applications 39 (12), 10722-10730, 2012
252012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20