Aravindan Vijayaraghavan
Aravindan Vijayaraghavan
Dirección de correo verificada de northwestern.edu - Página principal
Título
Citado por
Citado por
Año
Detecting high log-densities: an O(n¼) approximation for densest k-subgraph
A Bhaskara, M Charikar, E Chlamtac, U Feige, A Vijayaraghavan
Proceedings of the forty-second ACM symposium on Theory of computing, 201-210, 2010
3062010
Smoothed analysis of tensor decompositions
A Bhaskara, M Charikar, A Moitra, A Vijayaraghavan
Proceedings of the forty-sixth annual ACM symposium on Theory of computing …, 2014
1192014
Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph
A Bhaskara, M Charikar, V Guruswami, A Vijayaraghavan, Y Zhou
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete …, 2012
1142012
Learning mixtures of ranking models
P Awasthi, A Blum, O Sheffet, A Vijayaraghavan
arXiv preprint arXiv:1410.8750, 2014
622014
Approximation algorithms for semi-random partitioning problems
K Makarychev, Y Makarychev, A Vijayaraghavan
Proceedings of the forty-fourth annual ACM symposium on Theory of computing …, 2012
612012
Bilu–Linial stable instances of max cut and minimum multiway cut
K Makarychev, Y Makarychev, A Vijayaraghavan
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete …, 2014
552014
Uniqueness of tensor decompositions with applications to polynomial identifiability
A Bhaskara, M Charikar, A Vijayaraghavan
Conference on Learning Theory (COLT) 2014 35, 742–778, 2014
532014
Approximating Matrix p-norms
A Bhaskara, A Vijayaraghavan
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete …, 2011
432011
On learning mixtures of well-separated gaussians
O Regev, A Vijayaraghavan
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), 85-96, 2017
422017
Beating the random assignment on constraint satisfaction problems of bounded degree
B Barak, A Moitra, R O'Donnell, P Raghavendra, O Regev, D Steurer, ...
arXiv preprint arXiv:1505.03424, 2015
342015
Approximation Algorithms and Hardness of the k-Route Cut Problem
J Chuzhoy, Y Makarychev, A Vijayaraghavan, Y Zhou
ACM Transactions on Algorithms (TALG) 12 (1), 1-40, 2015
332015
Correlation clustering with noisy partial information
K Makarychev, Y Makarychev, A Vijayaraghavan
Conference on Learning Theory, 1321-1342, 2015
292015
Learning communities in the presence of errors
K Makarychev, Y Makarychev, A Vijayaraghavan
Conference on Learning Theory, 1258-1291, 2016
252016
Constant factor approximation for balanced cut in the PIE model
K Makarychev, Y Makarychev, A Vijayaraghavan
Proceedings of the forty-sixth annual ACM symposium on Theory of computing …, 2014
242014
Approximation algorithms for label cover and the log-density threshold
E Chlamtáč, P Manurangsi, D Moshkovitz, A Vijayaraghavan
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete …, 2017
192017
Sorting noisy data with partial information
K Makarychev, Y Makarychev, A Vijayaraghavan
Proceedings of the 4th conference on Innovations in Theoretical Computer …, 2013
182013
On robustness to adversarial examples and polynomial optimization
P Awasthi, A Dutta, A Vijayaraghavan
arXiv preprint arXiv:1911.04681, 2019
152019
Clustering stable instances of euclidean k-means
A Vijayaraghavan, A Dutta, A Wang
Proceedings of the Neural Information Processing Systems (NIPS), 2017
132017
Clustering stable instances of euclidean k-means
A Dutta, A Vijayaraghavan, A Wang
arXiv preprint arXiv:1712.01241, 2017
102017
Smoothed analysis in unsupervised learning via decoupling
A Bhaskara, A Chen, A Perreault, A Vijayaraghavan
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS …, 2019
62019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20