Seguir
Christian Requena-Mesa
Christian Requena-Mesa
Dirección de correo verificada de bgc-jena.mpg.de - Página principal
Título
Citado por
Citado por
Año
Global COVID-19 lockdown highlights humans as both threats and custodians of the environment
AE Bates, RB Primack, BS Biggar, TJ Bird, ME Clinton, RJ Command, ...
Biological conservation 263, 109175, 2021
1102021
EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task.
C Requena-Mesa, V Benson, M Reichstein, J Runge, J Denzler
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
212021
Identifying dynamic memory effects on vegetation state using recurrent neural networks
B Kraft, M Jung, M Körner, C Requena Mesa, J Cortés, M Reichstein
Frontiers in big Data 2, 31, 2019
192019
Deep learning–an opportunity and a challenge for geo-and astrophysics
C Reimers, C Requena-Mesa
Knowledge discovery in big data from astronomy and earth observation, 251-265, 2020
172020
Physics-informed GANs for coastal flood visualization
B Lütjens, B Leshchinskiy, C Requena-Mesa, F Chishtie, ...
arXiv preprint arXiv:2010.08103, 2020
142020
Predicting landscapes from environmental conditions using generative networks
C Requena-Mesa, M Reichstein, M Mahecha, B Kraft, J Denzler
German Conference on Pattern Recognition, 203-217, 2019
112019
Physically-consistent generative adversarial networks for coastal flood visualization
B Lütjens, B Leshchinskiy, C Requena-Mesa, F Chishtie, ...
arXiv preprint arXiv:2104.04785, 2021
102021
Predicting landscapes as seen from space from environmental conditions
C Requena-Mesa, M Reichstein, M Mahecha, B Kraft, J Denzler
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
72018
Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks, Front. Big Data, 2, 31
B Kraft, M Jung, M Körner, C Requena Mesa, J Cortés, M Reichstein
52019
Spatio‐temporal Autoencoders in Weather and Climate Research
XA Tibau, C Reimers, C Requena‐Mesa, J Runge
Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote …, 2021
42021
Supernovae: VAE Based Kernel-PCA For Analysis of Spatio-Temporal Earth Data
XA Tibau, C Requena-Mesa, C Reimers, J Denzler, V Eyring, ...
Climate Informatics Workshop 2018, 2018
32018
EarthNet2021: A novel large-scale dataset and challenge for forecasting localized climate impacts
C Requena-Mesa, V Benson, J Denzler, J Runge, M Reichstein
arXiv preprint arXiv:2012.06246, 2020
22020
Integration of a deep-learning-based fire model into a global land surface model
R Son, T Stacke, V Gayler, JEMS Nabel, R Schnur, LA Silva, CR Mesa, ...
Authorea Preprints, 2023
12023
Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs
C Robin, C Requena-Mesa, V Benson, L Alonso, J Poehls, N Carvalhais, ...
arXiv preprint arXiv:2210.13648, 2022
12022
DeepExtremes: Explainable Earth Surface Forecasting Under Extreme Climate Conditions
K Mora, G Brandt, V Benson, C Brockmann, G Camps-Valls, ...
EGU General Assembly Conference Abstracts, EGU-12657, 2023
2023
Forecasting localized weather impacts on vegetation as seen from space with meteo-guided video prediction
V Benson, C Requena-Mesa, C Robin, L Alonso, J Cortés, Z Gao, ...
arXiv preprint arXiv:2303.16198, 2023
2023
Modeling landscape-scale vegetation response to climate: Synthesis of the EarthNet challenge
V Benson, C Requena-Mesa, C Robin, L Alonso, N Carvalhais, ...
EGU23, 2023
2023
Modeling vegetation response to climate in Africa at fine resolution: EarthNet2023, a deep learning dataset and challenge.
C Robin, C Requena-Mesa, V Benson, L Alonso, J Poehls, N Carvalhais, ...
EGU23, 2023
2023
Generative Adversarial Networks in the Geosciences
G Mateo‐García, V Laparra, C Requena‐Mesa, L Gómez‐Chova
Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote …, 2021
2021
EarthNet2021: Self-supervised impact predictions of extreme weather.
C Requena Mesa, V Benson, J Denzler, J Runge, M Reichstein
EGU General Assembly Conference Abstracts, EGU21-1612, 2021
2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20