Seguir
Yuntao Qian
Yuntao Qian
Professor of Computer Science, Zhejiang University
Dirección de correo verificada de zju.edu.cn
Título
Citado por
Citado por
Año
Hyperspectral Unmixing viaSparsity-Constrained Nonnegative Matrix Factorization
Y Qian, S Jia, J Zhou, A Robles-Kelly
IEEE Transactions on Geoscience and Remote Sensing 49 (11), 4282-4297, 2011
5692011
Constrained nonnegative matrix factorization for hyperspectral unmixing
S Jia, Y Qian
IEEE Transactions on Geoscience and Remote Sensing 47 (1), 161-173, 2008
4512008
Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
Y Qian, M Ye, J Zhou
IEEE Transactions on Geoscience and Remote Sensing 51 (4), 2276-2291, 2012
3752012
Band selection for hyperspectral imagery using affinity propagation
Y Qian, F Yao, S Jia
IET Computer Vision 3 (4), 213-222, 2009
2262009
Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation
Y Qian, M Ye
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2012
2102012
Unsupervised band selection for hyperspectral imagery classification without manual band removal
S Jia, Z Ji, Y Qian, L Shen
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2012
1852012
Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery
Y Qian, F Xiong, S Zeng, J Zhou, YY Tang
IEEE Transactions on Geoscience and Remote Sensing 55 (3), 1776-1792, 2016
1692016
Spectral and spatial complexity-based hyperspectral unmixing
S Jia, Y Qian
IEEE Transactions on Geoscience and Remote Sensing 45 (12), 3867-3879, 2007
1562007
Material based object tracking in hyperspectral videos
F Xiong, J Zhou, Y Qian
IEEE Transactions on Image Processing 29, 3719-3733, 2020
1542020
Multitask sparse nonnegative matrix factorization for joint spectral–spatial hyperspectral imagery denoising
M Ye, Y Qian, J Zhou
IEEE Transactions on Geoscience and Remote Sensing 53 (5), 2621-2639, 2014
1512014
On the sampling strategy for evaluation of spectral-spatial methods in hyperspectral image classification
J Liang, J Zhou, Y Qian, L Wen, X Bai, Y Gao
IEEE Transactions on Geoscience and Remote Sensing 55 (2), 862-880, 2016
1242016
Hypergraph-regularized sparse NMF for hyperspectral unmixing
W Wang, Y Qian, YY Tang
IEEE journal of selected topics in applied earth observations and remote …, 2016
1002016
Text categorization based on regularization extreme learning machine
W Zheng, Y Qian, H Lu
Neural Computing and Applications 22, 447-456, 2013
982013
Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification
M Ye, Y Qian, J Zhou, YY Tang
IEEE Transactions on Geoscience and Remote Sensing 55 (3), 1544-1562, 2017
962017
Hyperspectral unmixing via total variation regularized nonnegative tensor factorization
F Xiong, Y Qian, J Zhou, YY Tang
IEEE Transactions on Geoscience and Remote Sensing 57 (4), 2341-2357, 2018
852018
3-D nonlocal means filter with noise estimation for hyperspectral imagery denoising
Y Qian, Y Shen, M Ye, Q Wang
2012 IEEE International Geoscience and Remote Sensing Symposium, 1345-1348, 2012
672012
Deconv R-CNN for small object detection on remote sensing images
W Zhang, S Wang, S Thachan, J Chen, Y Qian
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
632018
Hyperspectral Restoration via Gradient Regularized Low-Rank Tensor Factorization
F Xiong, J Zhou, Y Qian
IEEE Transactions on Geoscience and Remote Sensing 57 (12), 10410-10425, 2019
582019
Adaptive Sparsity-Constrained NMF With Half-Thresholding Algorithm for Hyperspectral Unmixing
W Wang, Y Qian
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2015
582015
Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing
L Tong, J Zhou, X Li, Y Qian, Y Gao
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2016
572016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20