Meelis Kull
Meelis Kull
Associate Professor, University of Tartu
Dirección de correo verificada de ut.ee - Página principal
TítuloCitado porAño
g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments
J Reimand, M Kull, H Peterson, J Hansen, J Vilo
Nucleic acids research 35 (suppl_2), W193-W200, 2007
6042007
Expression Profiler: next generation—an online platform for analysis of microarray data
M Kapushesky, P Kemmeren, AC Culhane, S Durinck, J Ihmels, C Körner, ...
Nucleic acids research 32 (suppl_2), W465-W470, 2004
1382004
Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods
P Adler, R Kolde, M Kull, A Tkachenko, H Peterson, J Reimand, J Vilo
Genome biology 10 (12), R139, 2009
1272009
ASTD: the alternative splicing and transcript diversity database
G Koscielny, V Le Texier, C Gopalakrishnan, V Kumanduri, JJ Riethoven, ...
Genomics 93 (3), 213-220, 2009
1142009
Precision-recall-gain curves: PR analysis done right
P Flach, M Kull
Advances in neural information processing systems, 838-846, 2015
662015
The SPHERE challenge: Activity recognition with multimodal sensor data
N Twomey, T Diethe, M Kull, H Song, M Camplani, S Hannuna, X Fafoutis, ...
arXiv preprint arXiv:1603.00797, 2016
442016
Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development
N Billon, R Kolde, J Reimand, MC Monteiro, M Kull, H Peterson, ...
Genome biology 11 (8), R80, 2010
282010
Fast approximate hierarchical clustering using similarity heuristics
M Kull, J Vilo
BioData mining 1, 9, 2008
282008
Cost-sensitive boosting algorithms: Do we really need them?
N Nikolaou, N Edakunni, M Kull, P Flach, G Brown
Machine Learning 104 (2-3), 359-384, 2016
262016
Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers
M Kull, T Silva Filho, P Flach
Artificial Intelligence and Statistics, 623-631, 2017
242017
Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration
M Kull, P Flach
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2015
192015
Beyond sigmoids: How to obtain well-calibrated probabilities from binary classifiers with beta calibration
M Kull, TM Silva Filho, P Flach
Electronic Journal of Statistics 11 (2), 5052-5080, 2017
172017
Patterns of dataset shift
M Kull, P Flach
First International Workshop on Learning over Multiple Contexts (LMCE) at …, 2014
152014
Reliability maps: a tool to enhance probability estimates and improve classification accuracy
M Kull, PA Flach
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2014
132014
Global transcriptomic analysis of murine embryonic stem cell‐derived brachyury+ (T) cells
MX Doss, V Wagh, H Schulz, M Kull, R Kolde, K Pfannkuche, T Nolden, ...
Genes to Cells 15 (3), 209-228, 2010
122010
Versatile decision trees for learning over multiple contexts
R Al-Otaibi, RBC Prudêncio, M Kull, P Flach
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2015
102015
Probabilistic sensor fusion for ambient assisted living
T Diethe, N Twomey, M Kull, P Flach, I Craddock
arXiv preprint arXiv:1702.01209, 2017
92017
VisHiC—hierarchical functional enrichment analysis of microarray data
D Krushevskaya, H Peterson, J Reimand, M Kull, J Vilo
Nucleic acids research 37 (suppl_2), W587-W592, 2009
92009
Reframing in context: A systematic approach for model reuse in machine learning
J Hernández-Orallo, A Martínez-Usó, RBC Prudêncio, M Kull, P Flach, ...
AI Communications 29 (5), 551-566, 2016
82016
Subgroup discovery with proper scoring rules
H Song, M Kull, P Flach, G Kalogridis
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2016
62016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20