Peter Bartlett
Peter Bartlett
Professor, EECS and Statistics, UC Berkeley
Dirección de correo verificada de cs.berkeley.edu - Página principal
Título
Citado por
Citado por
Año
Boosting the margin: A new explanation for the effectiveness of voting methods
RE Schapire, Y Freund, P Bartlett, WS Lee
The annals of statistics 26 (5), 1651-1686, 1998
32881998
New support vector algorithms
B Schölkopf, AJ Smola, RC Williamson, PL Bartlett
Neural computation 12 (5), 1207-1245, 2000
31952000
Learning the kernel matrix with semidefinite programming
GRG Lanckriet, N Cristianini, P Bartlett, LE Ghaoui, MI Jordan
Journal of Machine learning research 5 (Jan), 27-72, 2004
27472004
Rademacher and Gaussian complexities: Risk bounds and structural results
PL Bartlett, S Mendelson
Journal of Machine Learning Research 3 (Nov), 463-482, 2002
17562002
Neural network learning: Theoretical foundations
M Anthony, PL Bartlett
cambridge university press, 2009
16582009
For valid generalization the size of the weights is more important than the size of the network
PL Bartlett
Advances in neural information processing systems, 134-140, 1997
14831997
Regularization networks and support vector machines
T Evgeniou, M Pontil, T Poggio
Advances in computational mathematics 13 (1), 1, 2000
14642000
Convexity, classification, and risk bounds
PL Bartlett, MI Jordan, JD McAuliffe
Journal of the American Statistical Association 101 (473), 138-156, 2006
11842006
Boosting algorithms as gradient descent
L Mason, J Baxter, PL Bartlett, MR Frean
Advances in neural information processing systems, 512-518, 2000
8882000
FaST linear mixed models for genome-wide association studies
C Lippert, J Listgarten, Y Liu, CM Kadie, RI Davidson, D Heckerman
Nature methods 8 (10), 833-835, 2011
8302011
Infinite-horizon policy-gradient estimation
J Baxter, PL Bartlett
Journal of Artificial Intelligence Research 15, 319-350, 2001
8092001
Structural risk minimization over data-dependent hierarchies
J Shawe-Taylor, PL Bartlett, RC Williamson, M Anthony
IEEE transactions on Information Theory 44 (5), 1926-1940, 1998
6371998
Local rademacher complexities
PL Bartlett, O Bousquet, S Mendelson
The Annals of Statistics 33 (4), 1497-1537, 2005
5752005
Learning the kernel function via regularization
CA Micchelli, M Pontil
Journal of machine learning research 6 (Jul), 1099-1125, 2005
4412005
Generalized support vector machines
O Mangasarian
4251998
Spectrally-normalized margin bounds for neural networks
PL Bartlett, DJ Foster, MJ Telgarsky
Advances in Neural Information Processing Systems, 6240-6249, 2017
4202017
Sparse greedy Gaussian process regression
AJ Smola, PL Bartlett
Advances in neural information processing systems, 619-625, 2001
4022001
Model selection and error estimation
PL Bartlett, S Boucheron, G Lugosi
Machine Learning 48 (1-3), 85-113, 2002
3882002
Advances in large margin classifiers
AJ Smola, PJ Bartlett, D Schuurmans, B Schölkopf
MIT press, 2000
3852000
A comment on D
PL Bartlett, MI Jordan, JD Mcauliffe
V. Lindley’s statistical paradox, Biometrika, 1957
3821957
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20